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Abstract

Individual variability in response to radiation exposure is recognised and has often been reported as important in treatment
planning. Despite many efforts to identify biomarkers allowing the identification of radiation sensitive patients, it is not yet
possible to distinguish them with certainty before the beginning of the radiotherapy treatment. A comprehensive analysis of
genome-wide single-nucleotide polymorphisms (SNPs) and a transcriptional response to ionising radiation exposure in twins
have the potential to identify such an individual. In the present work, we investigated SNP profile and CDKNIA gene expression
in blood T lymphocytes from 130 healthy Caucasians with a complex level of individual kinship (unrelated, mono- or dizygotic
twins). It was found that genetic variation accounts for 66% (95% CI 37-82%) of CDKNIA transcriptional response to radiation
exposure. We developed a novel integrative multi-kinship strategy allowing investigating the role of genome-wide polymor-
phisms in transcriptomic radiation response, and it revealed that rs205543 (ETV6 gene), 1s2287505 and rs1263612 (KLF7 gene)
are significantly associated with CDKNIA expression level. The functional analysis revealed that rs6974232 (RPA3 gene),
involved in mismatch repair (p value = 9.68¢—04) as well as in RNA repair (p value = 1.4¢—03) might have an important role
in that process. Two missense polymorphisms with possible deleterious effect in humans were identified: rs1133833 (AKIP!
gene) and 1517362588 (CCDC141 gene). In summary, the data presented here support the validity of this novel integrative data
analysis strategy to provide insights into the identification of SNPs potentially influencing radiation sensitivity. Further investi-
gations in radiation response research at the genomic level should be therefore continued to confirm these findings.

Keywords Radiation response - CDKNI1A - p value integration - Twin study - GWAS

Introduction tumour localisation and better dose delivery accuracy, patient

inter-individual response to ionising radiation (IR) exposure is

Radiation therapy is a leading modality for cancer treatment.
Although continuous technological improvements result in
amelioration of radiotherapy protocols leading to precise
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still a considerable risk factor (Pajic et al. 2015). Most patients
do not present early, or late, normal tissue toxicity following
radiotherapy and they are considered to be radioresistant. But
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a minority of patients develop severe complications during
the course or at the end of the treatment, like skin erythe-
ma, nausea, diarrhoea and many others, after receiving a
relatively low cumulative dose of radiation (Badie et al.
1995b; Lobachevsky et al. 2016). They are classified as
radiosensitive. High-energy X-rays delivered to the cells
cause water radiolysis and thereby production of reactive
oxygen species (ROS) which indirectly damage DNA
(Mettler 2012). The direct interaction between radiation
and DNA leads to a range of DNA damage. Amongst them,
double-strand breaks (DSBs) are the most toxic to the cells,
leading to cell death or permanent cell cycle arrest if
unrepaired. Therefore, efforts should be made to improve
knowledge and identification of individuals sensitive to
ionising radiation to improve radiation therapy efficiency
and radiation protection (West and Barnett 2011).
Individual radiosensitivity can be influenced by many fac-
tors such as DNA damage signalling and DNA repair
(Vignard et al. 2013; Badie et al. 1995a, 1997; Morgan
and Lawrence 2015), epigenctic modifications (Antwih
et al. 2013) or genomic sequence variation (Curwen et al.
2010; Finnon et al. 2008). Some genes, mostly participat-
ing in DNA double-strand break repair process, were iden-
tified to be involved in human radiosensitivity, e.g. ATM,
LIG4 and PRKDC (West and Barnett 2011). In this study,
we focus on the expression CDKNIA (cyclin-dependent
kinase inhibitor-1A) which encodes p21 protein and is reg-
ulated by p53 protein involved in cell cycle regulation and
arrest following DNA damage (Cazzalini et al. 2010; Chen
et al. 2015a; Galluzzi et al. 2016). CDKNIA also plays a
crucial role in various cancer development (Abbas and
Dutta 2009; Dunlop et al. 2012; Soltani et al. 2017).
Several studies show an association between CDKNIA-
SNPs and cancer and patient survival prognostics (e.g.
Cazier et al. 2014; Kang et al. 2015; Vargas-Torres et al.
2016). A recent study of Price et al. (2015) suggests that
CDKNIA regulates Langerhans cell and could influence
the response of cutaneous tumours to radiotherapy.
CDKNIA abnormal expression has been reported to be
associated with acute sensitivity to radiation (Amundson
et al. 2003; Badie et al. 2008; Szoltysek et al. 2018). In
Alsbeih et al. (2007), they show that individual response in
CDKNIA is related to inherent radiosensitivity. It is, there-
fore, assumed that CDKNIA expression level might be
predictive of radiation toxicity and an investigation that
allows explaining inter-patient CDKNIA expression vari-
ability is of high importance.

Many high-throughput approaches are currently used to
gain an understanding of radiosensitivity; amongst them,
the analysis of single-nucleotide polymorphisms (SNPs) is
one of the most promising to investigate radiation re-
sponse (Andreassen et al. 2012). Radiogenomics, which
concentrates on the relation between genomics and
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radiation toxicity, has gained a high interest lately (West
and Barnett 2011). Although a large number of studies
have been reported (e.g. Best et al. 2011; Kerns et al.
2018; Mumbrekar et al. 2016; Rosenstein 2011), there is
a need to continue identifying genes and SNPs that affect
radiosensitivity to understand better the mechanism under-
lying radiation toxicity in sensitive patients. The choice of
methods for data analysis allowing identification of rele-
vant SNPs depends on the study design. Different statisti-
cal approaches have been widely discussed and presented
(Bush and Moore 2012; Evangelou and loannidis 2013).
Twin-based study designs were pointed as a promising
source of information in genomics (Andrew et al. 2011;
Bataille et al. 2012; Chen et al. 2015b; Tan et al. 2010)
and transcriptomics (Majewska et al. 2017; Mamrut et al.
2017). In the following study, a dataset of a complex
structure and small sample size with related (dizygotic
and monozygotic twins) and unrelated individuals and
quantitative measurement of CDKNI/A gene expression
as a metric of radio-toxicity is analysed. Such data struc-
ture is rarely studied and requires the development of ded-
icated signal analysis pipeline supporting the potential
identification of a genetic signature of radiosensitivity. A
literature screen revealed that a variety of quantitative trait
loci (QTL) sib-pairs type methods are proposed to study
related individuals (Kruglyak and Lander 1995a; Sham
et al. 2002; Visscher and Hopper 2001). Several statistical
approaches dedicated to the sample analysis of unrelated
individuals are also available. We concluded that there is a
lack of simple solutions available which would apply to
complex study designs.

To fill that gap, we propose a novel signal analysis
pipeline combining classical biometrical models
(Kruglyak and Lander 1995b) and cross-sample p value
integration methods. Although challenging, the integra-
tion approach appears to be the most promising methods
in genome-wide studies (Moore et al. 2010; Stranger
et al. 2011). The origin of integration methods arose from
meta-analyses, where meta-genome-wide association
studies (GWAS) brought new light to specific diseases
(Barrett et al. 2009; Pharoah et al. 2013). Statistical inte-
gration in GWAS and SNP identification was previously
presented as one of the most promising ways of analysis
(Chen 2013; Chen et al. 2014; Zaykin and Kozbur 2010).
In this study, we proposed to use statistical integration
across individuals of different kinship for the validation
of SNPs associated with radiation response. We demon-
strated that the proposed procedure of integration im-
proved the statistical analysis, especially in the case of
small sample size studies. Finally, new promising candi-
date polymorphisms describing the association between
genomics and radiation response in healthy individuals
were identified.
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Material and methods
Material

T lymphocytes were previously collected from healthy young
adults of European ancestry sampled from the Finnish Twin
Cohort Study (Finnon et al. 2008). The group under investi-
gation here included 130 individuals divided into three sub-
groups according to their kinship: (1) 44 unrelated individuals
(unR); (2) 28 dizygotic twin pairs (DZ) and (3) 15 monozy-
gotic twin pairs (MZ). CDKNIA gene expression was mea-
sured for every individual by qPCR technique at two condi-
tions: control (no irradiation (0 Gy)) and 2 h after sample
irradiation with a single dose of 2 Gy of X-ray. The irradiation
was performed at room temperature with an A.G.O. HS X-ray
system by Aldermaston, Reading, UK—output 13 mA,
250 kV peak, 0.5 Gy/min. Detailed information about sample
collection, storage and experiment was presented in (Kabacik
et al. 2011; Manning et al. 2013). Additionally, DNA was
extracted from all control samples using the DNeasy kit
(Qiagen) and sent for genotyping. Analysis of 567,096
SNPs was performed by Axiom GW Human hg36.1 arrays
(Affymetrix, ThermoFisher Scientific) according to manu-
facturer’ instruction. The used arrays did not include poly-
morphisms present in CDKNIA gene; thus, only SNPs in
genes that interact with CDKNIA could be investigated in
presented work.

Methods
Data pre-processing

All genotyped SNPs were annotated to the genome version 38
(according to NCBI resources). The standard GWAS specific
quality control was performed, including minor allele frequen-
cy (MAF) control with level 10% and call rate on 90% (Turner
et al. 2011). The quality control procedures reduced the num-
ber of SNPs from 567,096 to 383,322 (none of them was
located in CDKNIA). The internally standardised ratio be-
tween the response at 2 Gy and referenced 0 Gy was calculat-
ed for investigated biomarker (CDKNIA) per each person.
The 2 Gy vs 0 Gy ratio value will represent the radiation
response of the investigated biomarker.

Heritability

At first, the hypothesis of the mean equality between MZ and
DZ twin signals of 2 Gy vs 0 Gy ratio of CDKNIA expression
was tested by a modified ¢ test procedure proposed by
Christian (1979). Further, the homogeneity of the MZ and
DZ intra-class Pearson correlations was tested with the use
of z-transformation (Fisher 1992). The assessment of genetic
heritability of the trait was done by structural equation

modelling (SEM) for the variance decomposition method,
which bases on standard Falconer’s formula (Falconer 1965;
Neale and Cardon 1994). The standard weights for additive
(A) and dominant (D) genetic effects were set for monozygot-
ic twins and equalled one for both effects. The 0.5 for additive
effect and 0.25 dominant effect were considered for dizygotic
twins. Common environment (C) weight values equal to 1 for
both DZ and MZ twins as analysed twin pairs were reared
together. The ACE and ADE models and all their submodels
were constructed with the use of OpenMx (Neale et al. 2016).
The Bayesian information criterion (BIC) was applied for
model selection (Schwarz 1978). Additionally, the ADE and
AE models were tested by a log-likelihood ratio test (LRT) for
their over performance of the simple E model. To each model
component, its 95% confidence interval (CI) was calculated.

Statistical analysis: unrelated

To verify the hypothesis on equality of signal means across
observed genotypes, the adequate statistical test was per-
formed on the probe of unrelated individuals (Bush and
Moore 2012). The three different models of SNP-CDKNIA
expression interactions were checked: genotype, dominant
and recessive (Lettre et al. 2007; Zyla et al. 2014).
Normality of CDKNIA expression’s distribution was calculat-
ed by the Shapiro-Wilk test, and homogeneity of variances
was verified by Bartlett’s test or F test. Depending on their
results, parametric (ANOVA, ¢ test, the Welch test) or non-
parametric (the Kruskal-Wallis, Mann-Whitney-Wilcoxon)
tests were applied. The best model of SNP-CDKNIA interac-
tion was assigned to each SNP based on calculated p values
with the use of minimum p value criterion.

Statistical analysis: twin analysis

The novelty of presented work is stated for twin analysis. The
SNP specific best model of SNP-CDKN/A interaction, obtain-
ed in the group of unrelated individuals for particular SNP,
was used to split twin pairs into two subgroups named as
identical by model (IBM) and non-identical by model
(nIBM) following rules presented in Table 1. Splitting was
done independently for each SNP; the difference of signal
level (2 Gy vs 0 Gy ratio) between twins was calculated. In
the case of IBM twins, the hypothesis on the average differ-
ence of signal between twins being equal to zero was verified.
For nIBM twins, the null and alternative hypotheses depended
on signal trend observed amongst unrelated individuals. For
example, in the case of a significantly higher level of
CDKNIA gene expression observed in Ax group vs. BB
group in unrelated (unR) population, the same relation was
tested in DZ and MZ subgroups by properly formulated one-
side tests. The above-described procedure allows for response
trend control in the process of signal validation. During the
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Table 1 The rules of splitting DZ

and MZ twins into identical by Sibling 1 Sibling 2 The best model of interaction in unR population
model (IBM) and non-identical by ] ]
model (NIBM) subgroups based Genotype Dominant, Recessive,
on the best model of SNP- AAvs xB Ax vs BB
CDKNIA interaction found in
unrelated population (unR). AA AA IBM IBM IBM
Letters A and B code for the AA AB nIBM nIBM IBM
genotyping results, A stands for AA BB AIBM WIBM WIBM
reference allele, while B for
mutant one AB AA nIBM nIBM IBM
AB AB IBM IBM IBM
AB BB nIBM IBM nIBM
BB AA nIBM nIBM nIBM
BB AB nIBM IBM nIBM
BB BB IBM IBM IBM

next step, the integration of p values from unR and DZ nIBM
was performed. In the case of a dominant or recessive model
of SNP-CDKNIA interaction, weighted z-method (Liptak
1958; Mosteller et al. 1954) with an inverse of standard error
(1/SE) as the weighting factor was used (Whitlock 2005),
while for genotype model, the Lancaster integration procedure
was applied (Lancaster 1961). The procedure was not applied
to data on monozygotic twins, who have the same genotype;
hence, only identical by model twins were observed.
Polymorphism was considered as associated with CDKNIA
expression if unR and nIBM DZ combined p value was less

than 0.001 and there was no evidence to reject the null hy-
pothesis on equality of response between DZ and MZ at sig-
nificance level a equal to 0.001. The diagram of the proposed
analysis is presented in Fig. 1b. Finally, the results of integra-
tive procedure were compared to commonly used non-
parametric QTL method proposed by Kruglyak and Lander
in (Kruglyak and Lander 1995b) including model weights
presented in (Kruglyak and Lander 1995a). The Kruglyak
and Lander method is the most common approach used in twin
and sib-pair analysis, which allow to include models of genetic
interactions. The candidate polymorphisms in this approach are

Fig. 1 The statistical analysis a )
pipelines, where a represents the DZASEMBYIDS IR
standard statistical analysis and b i
represents the developed novel DZ nIBM twins Raglic :)Z il
statistical analysis procedure. e . T
Both are dedicated to the testing - — — |~ + — R p-value INTEG
association in complex study 3 i | Integration
: T
design ‘s model (SNP) : I pvlueunr p-value DZ IBM
g i p-value DZ nIBM
trend (SNP) : ——
S | p-value MZ IBM
MZ IBM twins p-value MZ IBM
DZ twins p-value DZ
p-value unR
T p-value unR
&
T,_{ p-value DZ
= model (SNP) -
e
p-value MZ
MZ twins p-value MZ
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Table 2 Result of heritability

investigation for CDKNIA Model BIC A [95% CI] D [95% CI] E [95% CI] LRT p value model
expression in response to vs E model
radiation of dose 2 Gy (2 Gy vs
0 Gy ratio) ADE 240 51[0-82] 15 [0-81] 34 [0-63] 0.0005

AE 235 66 [37-82] - 34 [0-62] 0.0001

E 246 - - 100 [100-100] -

selected as follows: p value unR less than 0.001, p value DZ
QTL less than 0.001, p value MZ QTL less than 0.001. The
diagram of the standard analysis is presented in Fig. 1a.

In silico genomic functional analysis

In silico functional analysis was performed for sets of candi-
date radiation response relevant SNPs for signal 2 Gy vs 0 Gy
level of CDKNIA expression and each analysis approach
(standard and novel). The genomic location of each candidate
SNP was assessed, and the lists of SNPs linked genes were
constructed. Using the resources of SIGNOR 2.0 database
(Perfetto et al. 2015), the list of genes which directly interact
to/with CDKNIA was constructed. Additionally, the list of
transcription factors (TFs) of CDKNIA gene was obtained
using TRRUST 2.0 database (Han et al. 2017). Both lists were
compared with obtained candidate polymorphisms.
Additionally, the overrepresentation analysis of GO terms (bi-
ological process only) and KEGG pathways was performed
(Falcon and Gentleman 2006; Kanehisa et al. 2016). The del-
eterious impact to the human organism of each candidate mis-
sense SNP was accessed by the PredictSNP algorithm (Bendl
et al. 2014). Finally, the literature research was performed
using the PubMed resource.

Results
Heritability
First, the intra-class correlation coefficients were calculated

for both twin types, and hypothesis on MZ twins’ correlation
being smaller or equal to DZ twins’ correlation was tested (H:

vz < rpz). Correlations between twins for 2 Gy vs 0 Gy ratio
equals 0.26 (DZ) and 0.77 (MZ) respectively. Within the
monozygotic twins, significantly larger correlation than with-
in dizygotic twins is observed (p value = 0.0140). It shows
significantly larger signal similarity with increased genetic
relatedness. Additionally, the equality of means of CDKNIA
gene expression between DZ and MZ twins was tested. The
Christian procedure brings no evidence against the hypothesis
on equality of signal mean values (p value = 0.3333). Both
outcomes allow for further investigation of heritability. The
correlation coefficient for MZ is twice larger than for DZ,
which determines the ADE model (and its submodels) to be
only considered. The ADE model and its submodels where
constructed, and the BIC method was used for model selec-
tion. The AE model shows the lowest BIC value and estimates
the narrow-sense heritability estimate CDKN/A radiation re-
sponse as equal to 66% (95% CI 37-82%). Detailed results for
the main model and submodels are presented in Table 2. All
the above support the hypothesis that a large fraction of
CDKNIA response expression variation is accounted for ge-
netic factors, which is of great importance for further associ-
ation study.

Polymorphism investigation

The results of the analysis for investigated experimental con-
dition (2 Gy vs 0 Gy ratio) and methods (integrative approach
and non-parametric QTL approach as reference) are presented
in Table 3. As can be observed, the novel method detects 1804
SNPs, of which 849 are located in transcriptomic regions. Out
of all SNPs detected by a novel approach, 81% were also
detected via standard approach. Figure 2 panel A presents
the exemplary polymorphism detected by the standard

Table3  The data analysis results (after MZ twin validation) for both methods and signal at 2 Gy vs 0 Gy ratio. The first column represents the standard
approach (Stand.), while the second column represents a novel integrative approach (Int.)

2 Gy vs 0 Gy ratio Genotype Dominant Recessive Total Common
Stand Int Stand Int Stand Int Stand Int
Initially, # of SNPs 2093 177,481 203,748 383,322 -
a=0.001 # candidate SNPs 1 52 92 839 88 913 181 1804 147 [81%]
# SNPs in genes 1 25 50 406 45 418 96 849 78 [81%]
# unique protein-coding genes 81 615 74 [91%]
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< Fig. 2 Levels of signal response (2 Gy vs 0 Gy) in the recessive genetic
model under different genotypes and different kinship classes for a
rs710652 polymorphism in KCNMB4, b rs205543 in ETVG, ¢
rs1263612 in KLF7 and d rs6974232 in RPA3 genes. The two left-side
plots represent the 95% confidence interval for the mean of CDKNIA
gene expression. The right-side plots represent the expression levels for
non-identical by model (nIBM) dizygotic twins, where discontinued
green colour lines represent identical response trend while discontinued
red colour lines represent opposite response trend amongst unR and DZ
nIBM

approach and not identified by the novel method (rs710652 in
KCNMB4 gene). The first plot (left panel) presents mean
CDKNIA expression and its 95% CI in the phenotype-
genotype interaction model for unrelated individuals. Second
plot (middle panel) presents mean value and its 95% CI for
expression difference between twin pairs. Third plot (right
panel) shows CDKNIA expression within DZ nIBM twin
pairs and serves as a validation of response trend found in
unrelated individuals (left panel). As can be observed, the
standard procedure detects polymorphisms, which do not val-
idate by the trend of signal expression observed in unrelated
individuals—it can be classified as false discovery. The list of
all detected polymorphisms with their genomic information is
included in Supplementary Material 1. In the next paragraph, a
consideration of the relationship of detected polymorphisms
and investigated phenomena is demonstrated.

In silico functional analysis

A literature study was performed to identify the signalling
cascade from the genes with the candidate relevant SNPs to
the CDKNIA gene. Two types of linkage were studied: (1)
interaction, where control of CDKNIA expression is done by
transcription factor (TFs) or protein phosphorylation with
identified SNPs and (2) complex, where a group of genes
(with detected SNPs) show an overrepresentation of pathway
highly relevant to radiation toxicity. Finally, they are accom-
panied by missense polymorphism investigation. The list of
proteins taking part in direct phosphorylation of p21 (encoded
by CDKNIA) was obtained using the resources of SIGNOR
2.0 (Perfetto et al. 2015), while TF genes for CDKNIA were
established via TRRUST 2.0 (Han et al. 2017). From the
group of detected polymorphisms, three of them are located
in genes responsible for transcription regulation of CDKNIA

(Table 4). First SNP—rs205543—is located in the ETV6 gene
also known as TEL oncogene. TEL oncogene was shown as
TF of CDKNIA and BBC3 and is related to “transcriptional
misregulation in cancer” pathway (Yamagata et al. 2006). The
rearrangements of E7V6 were also observed in radiation-
associated thyroid cancer (Leeman-Neill et al. 2014). Next,
two SNPs (rs2287505 and rs1263612) are located in KLF7
gene (part of the Kruppel family), which is mainly responsible
for cell proliferation, and it transcriptionally regulates
CDKNIA expression (Smaldone et al. 2004). CDKNIA ex-
pression level in different kinship subgroups and genotypes
for polymorphisms in E7V6 and KLF'7 genes are presented in
Fig. 2. As it can be observed in panels B and C for DZ nIBM
twins (middle panel), CIs do not include zero value, which
confirms different response caused by different genotypes at a
significance level < 0.05. Moreover, the right-side panel plot
shows that nIBM dizygotic twins represent the same signal
trend as observed in unrelated individuals. For the differences
of CDKNIA response signal in IBM twin pairs, there is no
statistical evidence that it is different from zero. It fulfils the
expectation as identical twins that share the same genotype
model express the similar CDKNIA radiation response.
None of the presented polymorphisms was detected by the
standard approach.

Next, the overrepresentation analysis for all obtained genes
with SNPs presented in Supplementary Material 1 was per-
formed on KEGG and GO (biological process (BP) only)
resources (Table 5). A detailed list is included in
Supplementary Material 2. As can be observed, the novel
integrative method shows a higher number of overrepresented
pathways and GO terms when compared to the standard ap-
proach. Out of overrepresented pathways at 2 Gy vs 0 Gy ratio
in KEGG and gene ontology (GO) those indicated by RPA3
gene (with candidate SNPs 1s6974232) are highly related to
the investigated phenomenon. RPA3 plays a role in both DNA
replication and the cellular response to DNA damage (together
with RPA] and RPA2). In the cellular response to DNA dam-
age, the RPA complex controls DNA repair and DNA damage
checkpoint activation (Haring et al. 2008). Recently, Guo et al.
showed the relationship between RPA family and distant me-
tastasis in nasopharyngeal carcinoma patients treated with
intensity-modulated radiation therapy (Guo et al. 2016). Of
the overrepresented KEGG pathways with RPA3 involvement,
we can distinguish mismatch repair (p value = 9.68e—04) or

Table 4 Result of the

investigation on transcription Gene s ID Model of Type of interaction with Integrated p Ref
factors and phosphorylation interaction CDKNI1A? value
proteins
ETV6 205543 AX vs BB TF 4.39¢-04 (Yamagata et al. 2006)
KLF7 2287505 AX vs BB RoTL 8.56e—04 (Smaldone et al. 2004)
1263612 AX vs BB 9.27e—04

& TF transcription factor, RoTL Regulation on transcription level
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Table 5 The summary

results for KEGG GO [BP]

overrepresentation

analysis Standard 4 99
Integrative 46 399
Common 4 17

DNA replication (p value = 2.63e—02). In the case of GO
analysis, the following terms were identified: RNA repair (p
value = 1.4e—03), mismatch repair (p value = 1.52e—02) and
nucleotide excision repair by DNA gap filling (p value =3.25¢
—02). As mentioned in the introduction, the DNA repair pro-
cesses and cell cycle control are crucial for radiosensitivity
phenomenon. RPA3 occurs together with investigated
CDKNIA in Reactome pathways (Fabregat et al. 2017): mi-
totic G1-G1/S phases, G1/S transition and cell cycle check-
points. The response level of CDKNIA under different kinship
and polymorphism rs6974232 is presented in Fig. 2 panel D.

Finally, the missense SNPs were investigated by
PredictSNP to assess the possible deleterious impact on pro-
tein function. Out of 21 missense polymorphisms, the
rs1133833, which change the arginine in position 23 to thre-
onine (R23T) in AKIPI gene, was predicted as deleterious
with a score of 72%. The AKIPI gene encodes A-kinase-
interacting protein 1 which regulates the effect of the cAMP-
dependent protein kinase signalling pathway on the NF-xB
activation cascade. It is well known that IR activates the
NF-«kB pathway which further makes cancer cell resistant to
treatment, while in parallel, the NF-kB has an impact to apo-
ptosis control (Gao et al. 2010; Magné et al. 2006; Molavi
Pordanjani and Jalal Hosseinimehr 2016). Additionally, the
AKIP1I is overexpressed in breast cancer and is related to poor
prognosis of survival (Mo et al. 2016). Second, a deleterious
polymorphism was rs17362588 located in CCDCI41 gene,
and it changes arginine in position 935 to tryptophan
(R935W, score 87%). The CCDC141 encodes a coiled-coil
domain-containing protein. However, its role is as yet unclear.
Several studies show mutations in CCDC141 in patients with
thyroid disorder known as idiopathic hypogonadotropic
hypogonadism (Hutchins et al. 2016; Turan et al. 2017).
However, in relation to radiation response, apoptosis and
CDKNIA have not been described in the literature.

Discussion and conclusions

The work presented here investigated genetic component in
CDKNIA expression following ionising radiation exposure
which was used as a surrogate marker for radiosensitivity of
healthy individuals. Firstly, we have shown that CDKNIA
transcriptional response to radiation is heritable, with a herita-
bility estimate of 66% (95% CI 37—82%) based on a twin
analysis. This provided motivation for further investigation
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at the genomic level (SNP investigation). Additionally, those
findings are consistent with previous investigations of herita-
bility for apoptosis and cell cycle delay (Camplejohn et al.
2006; Finnon et al. 2008) and brought new insight of under-
standing which genes can be responsible for previously ob-
served outcomes. Furthermore, we proposed here a novel sig-
nal analysis pipeline for quantitative genomic association
analysis of data with different kinship and no family informa-
tion. The presented workflow is a combination of SNP geno-
type modelling and statistical integration. It can be an alterna-
tive for well-known linkage analysis of sib-pairs, when, in
most of the cases, family information is required (Fulker
et al. 1999; Li et al. 2005). Additionally, the integration pro-
cess increases the power of the conducted analysis, which is of
great importance when the sample size is small. Finally, the
method proposed here includes control of response trends in
the process of validation, which allows for reliable candidate
polymorphism detection, reducing the number of false posi-
tives. The in silico investigation showed that obtained poly-
morphisms are related to the investigated phenomenon at the
global scale via overrepresentation analysis of pathways
and gene ontologies. Additionally, the direct interaction
with analysed CDKNIA expression was shown. SNPs lo-
cated in CDKNI1A transcription factors genes, ETV6
(rs205543) and KLF7 (rs2287505, rs1263612), are of spe-
cial interests for further biological investigation. Further,
the rs6974232 in RPA3 gene should be highlighted as it
participates in DNA repair and replication processes
which are crucial pathways to radiation response. Finally,
the missense polymorphism rs1133833 in AK/P] gene
with possible deleterious impact to protein function was
identified. In summary, the results presented support the
validity of the proposed statistical strategy of analysis and
demonstrate that high-throughput genomic approaches,
such as the one described here, can provide insights to
identify radiosensitive patients, and further similar inves-
tigations will help to develop future predictive assays for
clinical applications.
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