13 research outputs found

    Adaptation and visual search in mammographic images

    Full text link
    Abstract Radiologists face the visually challenging task of detecting suspicious features within the complex and noisy backgrounds characteristic of medical images. We used a search task to examine whether the salience of target features in x-ray mammograms could be enhanced by prior adaptation to the spatial structure of the images. The observers were not radiologists, and thus had no diagnostic training with the im-ages. The stimuli were randomly selected sections from nor-mal mammograms previously classified with BIRADS Den-sity scores of Bfatty ^ versus Bdense, ^ corresponding to differ-ences in the relative quantities of fat versus fibroglandular tissue. These categories reflect conspicuous differences in vi-sual texture, with dense tissue being more likely to obscure lesion detection. The targets were simulated masses corre-sponding to bright Gaussian spots, superimposed by adding the luminance to the background. A single target was random-ly added to each image, with contrast varied over five levels so that they varied from difficult to easy to detect. Reaction times were measured for detecting the target location, before or after adapting to a gray field or to random sequences of a different set of dense or fatty images. Observers were faster at detecting the targets in either dense or fatty images after adapting to the specific background type (dense or fatty) that they were searching within. Thus, the adaptation led to a facilitation of search performance that was selective for the background tex-ture. Our results are consistent with the hypothesis that adap-tation allows observers to more effectively suppress the spe-cific structure of the background, thereby heightening visual salience and search efficiency

    Comparative performance of multiview stereoscopic and mammographic display modalities for breast lesion detection.

    No full text
    PURPOSE: Mammography is known to be one of the most difficult radiographic exams to interpret. Mammography has important limitations, including the superposition of normal tissue that can obscure a mass, chance alignment of normal tissue to mimic a true lesion and the inability to derive volumetric information. It has been shown that stereomammography can overcome these deficiencies by showing that layers of normal tissue lay at different depths. If standard stereomammography (i.e., a single stereoscopic pair consisting of two projection images) can significantly improve lesion detection, how will multiview stereoscopy (MVS), where many projection images are used, compare to mammography? The aim of this study was to assess the relative performance of MVS compared to mammography for breast mass detection. METHODS: The MVS image sets consisted of the 25 raw projection images acquired over an arc of approximately 45 degrees using a Siemens prototype breast tomosynthesis system. The mammograms were acquired using a commercial Siemens FFDM system. The raw data were taken from both of these systems for 27 cases and realistic simulated mass lesions were added to duplicates of the 27 images at the same local contrast. The images with lesions (27 mammography and 27 MVS) and the images without lesions (27 mammography and 27 MVS) were then postprocessed to provide comparable and representative image appearance across the two modalities. All 108 image sets were shown to five full-time breast imaging radiologists in random order on a state-of-the-art stereoscopic display. The observers were asked to give a confidence rating for each image (0 for lesion definitely not present, 100 for lesion definitely present). The ratings were then compiled and processed using ROC and variance analysis. RESULTS: The mean AUC for the five observers was 0.614 +/- 0.055 for mammography and 0.778 +/- 0.052 for multiview stereoscopy. The difference of 0.164 +/- 0.065 was statistically significant with a p-value of 0.0148. CONCLUSIONS: The differences in the AUCs and the p-value suggest that multiview stereoscopy has a statistically significant advantage over mammography in the detection of simulated breast masses. This highlights the dominance of anatomical noise compared to quantum noise for breast mass detection. It also shows that significant lesion detection can be achieved with MVS without any of the artifacts associated with tomosynthesis.Thesi

    <span style="font-size:22.5pt;mso-bidi-font-size:14.5pt; font-family:"Times New Roman";mso-fareast-font-family:"Times New Roman"; mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA; mso-bidi-font-weight:bold">Synthesis and Na<sup>+</sup>/H<sup>+</sup> exchange inhibitory activity of indanylideneacetylguanidines</span>

    No full text
    407-412Synthesis of indanylideneacetylguadines 7a-i and their corresponding reduced compounds 8a-e has been achieved and their Na+/H+ exchange inhibitory activity evaluated. All the compounds studied exhibit significant inhibition of <span style="font-size:16.0pt;mso-bidi-font-size: 8.0pt;font-family:Arial;mso-bidi-font-style:italic">Na+/H+ exchanger activity. Promising activity is shown by compounds 7g, 8b and <b style="mso-bidi-font-weight: normal">8d. From the structure activity analysis, it appears that reduction of exocyclic double bond is associated with a marked increase in inhibitory activity.</span

    Diagnostic imaging and biopsy pathways following abnormal screen-film and digital screening mammography

    No full text
    OBJECTIVE: The transition from screen-film to digital mammography may have altered diagnostic evaluation of women following a positive screening examination. This study compared use and timeliness of diagnostic imaging and biopsy for women screened with screen-film or digital mammography. MATERIALS AND METHODS: Data were from 35,321 positive screening mammograms on 32,087 women aged 40–89 years, from 22 Breast Cancer Surveillance Consortium facilities in 2005–2008. Diagnostic pathways were classified by their inclusion of diagnostic mammography, ultrasound, magnetic resonance imaging (MRI), and biopsy. We compared time to resolution and frequency of diagnostic pathways by patient characteristics, screening exam modality, and radiology facility. Between-facility differences were evaluated by computing the proportion of mammograms receiving follow-up with a particular pathway for each facility and examining variation in these proportions across facilities. Multinomial logistic regression adjusting for age, calendar year, and facility compared odds of follow-up with each pathway. RESULTS: The median time to resolution of a positive screening mammogram was 10 days. Compared to screen-film mammograms, digital mammograms were more frequently followed by only a single diagnostic mammogram (46% vs. 36%). Pathways following digital screening mammography were also less likely to include biopsy (16% vs. 20%). However, in adjusted analyses most differences were not statistically significant (p = 0.857 for mammography only; p = 0.03 for biopsy). Substantial variability in diagnostic pathway frequency was seen across facilities. For instance, the frequency of evaluation with diagnostic mammography alone ranged from 23% to 55% across facilities. CONCLUSION: Differences in evaluation of positive digital and screen-film screening mammograms were minor, and appeared to be largely attributable to substantial variation between radiology facilities. To guide health systems in their efforts to eliminate practices that do not contribute to effective care, we need further research to identify the causes of this variation and the best evidence-based approach for follow-up
    corecore