66 research outputs found

    1993 Earth Observing System reference handbook

    Get PDF
    Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail

    NASA 1990 Multisensor Airborne Campaigns (MACs) for ecosystem and watershed studies

    Get PDF
    The Multisensor Airborne Campaign (MAC) focus within NASA's former Land Processes research program was conceived to achieve the following objectives: to acquire relatively complete, multisensor data sets for well-studied field sites, to add a strong remote sensing science component to ecology-, hydrology-, and geology-oriented field projects, to create a research environment that promotes strong interactions among scientists within the program, and to more efficiently utilize and compete for the NASA fleet of remote sensing aircraft. Four new MAC's were conducted in 1990: the Oregon Transect Ecosystem Research (OTTER) project along an east-west transect through central Oregon, the Forest Ecosystem Dynamics (FED) project at the Northern Experimental Forest in Howland, Maine, the MACHYDRO project in the Mahantango Creek watershed in central Pennsylvania, and the Walnut Gulch project near Tombstone, Arizona. The OTTER project is testing a model that estimates the major fluxes of carbon, nitrogen, and water through temperate coniferous forest ecosystems. The focus in the project is on short time-scale (days-year) variations in ecosystem function. The FED project is concerned with modeling vegetation changes of forest ecosystems using remotely sensed observations to extract biophysical properties of forest canopies. The focus in this project is on long time-scale (decades to millenia) changes in ecosystem structure. The MACHYDRO project is studying the role of soil moisture and its regulating effects on hydrologic processes. The focus of the study is to delineate soil moisture differences within a basin and their changes with respect to evapotranspiration, rainfall, and streamflow. The Walnut Gulch project is focused on the effects of soil moisture in the energy and water balance of arid and semiarid ecosystems and their feedbacks to the atmosphere via thermal forcing

    Earth system dynamics: The interrelation of atmospheric, ocean and solid earth dynamics

    Get PDF
    The research work performed during the time period 16 Oct. 1992 through 31 Dec. 1993 is summarized. The overall research activity, including a list of the major findings of the EOS IDS research to date, is described, the publications and presentations are listed, and a budget request for the subsequent year is attached. Specifically, the report covers: EOS panel activities; major findings of research; team member contributions; new research directions; EOS restructuring effect; changes in requirements; plans for using existing data; collaborations with other EOS and non-EOS investigations; EOS instrument team interaction; instrument development verification and validation; interaction with EOSDIS and DAAC's; team coordination; overall management; summary of response to site review questions and comments; science computing facility; and additional new research activities

    Assessment of the biophysical characteristics of rangeland community using scatterometer and optical measurements

    Get PDF
    Research activities for the following study areas are summarized: single scattering of parallel direct and axially symmetric diffuse solar radiation in vegetative canopies; the use of successive orders of scattering approximations (SOSA) for treating multiple scattering in a plant canopy; reflectance of a soybean canopy using the SOSA method; and C-band scatterometer measurements of the Konza tallgrass prairie

    A new framework for integrated climate finance and inclusive responses to sustainable development in Malaysia

    Get PDF
    With Malaysia’s commitment to both mitigation and adaptation, the 21st Conference of Parties to the United Nations Framework Convention for Climate Change in Paris, 2015, will be both an opportunity to showcase best practices and a forum to promote international ownership of climate challenge before it becomes a catastrophe. Our experience with weather extremes is that the best time to intervene is at the risk level via prevention and preparedness, compared to any wait-and-see approach. As the Honourable Prime Minister of Malaysia, Dato’ Sri Mohd Najib Abdul Razak, elaborated during the recent 11th Malaysia Plan presentation to the parliament, ‘such an approach has to be seen as part of adopting green growth and increasing our commitment to long-term sustainability’. Malaysia is also aware that this requires policy support, technological interventions and financial commitment. It is for this reason the Malaysia’s pledge at the Copenhagen COP-15 was to reduce its carbon emission by 40% from 2005 levels by 2020, subject to technology transfer and financial support by developed countries. Having achieved a 33% reduction in the last five years, Malaysia is convinced that it can reach the 40% target following an inclusive partnership framework for action

    Melting of Major Glaciers in Himalayas: Role of Desert Dust and Anthropogenic Aerosols

    Get PDF
    The Himalayan and Tibet Glaciers, that are among the largest bodies of ice and fresh water resource outside of the polar ice caps, face a significant threat of accelerated meltdown in coming decades due to climate variability and change. The rate of retreat of these glaciers and changes in their terminus (frontal dynamics) is highly variable across the Himalayan range. These large freshwater sources are critical to human activities for food production, human consumption and a whole host of other applications, especially over the Indo-Gangetic (IG) plains. They are also situated in a geo-politically sensitive area surrounded by China, India, Pakistan, Nepal and Bhutan where more than a billion people depend on them. The major rivers of the Asian continent such as the Ganga (also known as Ganges), Brahmaputra, Indus, Yamuna, Sutluj etc., originate and pass through these regions and they have greater importance due to their multi-use downstream: hydro power, agriculture, aquaculture, flood control, and as a freshwater resource. Recent studies over the Himalayan Glaciers using ground-based and space-based observations, and computer models indicate a long-term trend of climate variability and change that may accelerate melting of the Himalayan Glaciers.https://digitalcommons.chapman.edu/sees_books/1001/thumbnail.jp

    Snow Cover Variability and Trend Over the Hindu Kush Himalayan Region Using MODIS and SRTM Data

    Get PDF
    Snow cover changes have a direct bearing on the regional and global energy and water cycles and the change in the Earth\u27s climate conditions. We studied the relatively long-term (2000–2017) altitudinal spatiotemporal changes in the coverage of snow and glaciers in one of the world\u27s largest mountainous regions, the Hindu Kush Himalayan (HKH) region, including Tibet, using remote sensing data (5 km grid resolution) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite. This dataset provided a unique opportunity to study zonal and hypsographic changes in the intra-annual (accumulating season and melting season) and interannual variations in snow and glacial cover over the HKH region. The zonal and altitudinal (hypsographic) analyses were carried out for the melting season and accumulating season. The altitude-wise linear trend analysis (Pearson\u27s) of snow cover, shown as a hypsographic curve, clearly indicates a major decline in snow cover (average of 5 % or more at 100 m interval aggregates) between 4000–4500 and 5500–6000 m altitudes, which is consistent with the median trend (Theil–Sen – TS) and the monotonic trend (Mann–Kendall – MK; statistics) analysis. This analysis also revealed the regions and altitudes where major and statistically significant increases (10 % to 30 %) or decreases (−10 % to −30 %) in snow cover are identified. The extrapolation of the altitude-wise linear trend shows that it may take between ∼ 74 and 7900 years, for 3001–6000 and 6000–7000 m altitude zones respectively, for mean snow cover to decline approximately 25 % in the HKH. More detailed analysis based on longer observational records and model simulations is warranted to better understand the underlying factors, processes, and feedbacks that affect the dynamic of snow cover in HKH. These preliminary results suggest a need for continued monitoring of this highly sensitive region to climate variability and change that depends on snow as a major source of freshwater for all human activities
    corecore