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1. Introduction 

The Himalayan and Tibet Glaciers, that are among the largest bodies of ice and fresh water 
resource outside of the polar ice caps, face a significant threat of accelerated meltdown in 
coming decades due to climate variability and change (Hasnain et al., 2002; Lau et al., 2010; 
Shrestha et al., 2011; Scherler et al., 2011). The rate of retreat of these glaciers and changes in 
their terminus (frontal dynamics) is highly variable across the Himalayan range (Raina, 
2010; Scherler et al., 2011). These large freshwater sources are critical to human activities for 
food production, human consumption and a whole host of other applications, especially 
over the Indo-Gangetic (IG) plains. They are also situated in a geo-politically sensitive area 
surrounded by China, India, Pakistan, Nepal and Bhutan where more than a billion people 
depend on them. The major rivers of the Asian continent such as the Ganga (also known as 
Ganges), Brahmaputra, Indus, Yamuna, Sutluj etc., originate and pass through these regions 
(Kulkarni et al., 2010; Kehrwald et al., 2008; Bookhagen & Burbank, 2010; Immerzeel et al., 
2009, 2010) and they have greater importance due to their multi-use downstream: hydro 
power, agriculture, aquaculture, flood control, and as a freshwater resource. Recent studies 
over the Himalayan Glaciers using ground-based and space-based observations, and 
computer models indicate a long-term trend of climate variability and change that may 
accelerate melting of the Himalayan Glaciers (Lau et al., 2010; Prasad et al., 2009). Other 
studies also suggest a decreasing trend in snowfall, which has historically served as a main 
source of precipitation for maintaining the glaciers and fresh water resources in this region. 
Short-term studies of terminus and mass balance of the Himalayan Glaciers, based on in situ 
observations, show an accelerated rate of melting (Berthier et al., 2007; Das et al, 2010; Raina, 
2010). However, several studies report the rate of melting and the corresponding change in 
temperature is found to vary across the entire Himalayan range (Naz et al., 2011a; Raina, 
2010; UNEP, 2008). Observations from space-based lasers altimeters (such as 
GLASS/ICESat), show glacial thickening in certain areas such as the Karakoram (Naz et al., 
2011b, personal communication) but increased melting in its surrounding regions. The 

www.intechopen.com



 
Planet Earth 2011 – Global Warming Challenges and Opportunities for Policy and Practice 90

recent increase in the lake water level over the Tibetan Plateau using ICESat altimetry data 
(2003-2009) emphasize the effect of global warming on the glaciers (Zhang et al., 2011). 
The major research objectives (and organization of sections of the chapter) of the present 
study are: 
1. Brief overview of the source and influence of desert dust and anthropogenic aerosols on 

the atmosphere, regional temperature change, evidences from ice-core studies, and 
retreat pattern of Himalayan and Tibet glaciers. The results from recent studies on these 
aspects are briefly discussed in section 2. 

2. Study of the aerial extent of major Himalayan and Tibetan Plateau snow cover and 
glaciers. We have used space-based sensors to study the several indicators of glacier 
dynamics such as glacier front, glacier lakes (melt-water lakes), and indicators of 
changes in the temperature of glaciers etc. We have used a combination of Landsat 
(since 1970s) and Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) observations (2000-2010). The findings from the current study are discussed in 
section 3. 

3. Source and transport of desert dust aerosols and anthropogenic pollutants over the 
Indian sub-continent. The inter-annual variability in the aerosol loading over the Indian 
sub-continent and the surrounding regions, such as Arabian Sea, have been studied 
using Moderate Resolution Imaging Spectroradiometer (MODIS) observations during 
the last decade. The role played by increasing anthropogenic activity, especially thermal 
power plants, industries, and vehicular emissions (since 1980) in changing the regional 
atmospheric (tropospheric) chemistry have been discussed. The influence of dense 
networks of coal-fired thermal power plants along the pathways of transport of desert 
dust has been discussed using observations from OMI Aura tropospheric NO2. The 
results from MODIS AOD (2000-2008) and OMI NO2 observations are discussed in 
section 4. The increasing awareness about the impact of dust storms due to daily 
observations from multiple environmental satellites and dissemination of news by 
media (print and television) since the last decade is also discussed briefly in section 4.  

4. Whether the major dust storms are capable of reaching up to high-altitude Himalayas (~4-
6 km above the mean sea level - msl). What is the height of vertical mix-up of aerosols 
during the dust storms over the IG plains, Himalayan and Tibet regions and its vertical 
range from the start of pre-monsoon season (April), through May month, and prior to the 
arrival of monsoon rainfall (late June or early July). Further, the variation of vertical mix-
up across the western, central, and eastern regions is not well known. 

To answers these questions, several case studies showing evidence of dust storms that can 
reach up to high altitude Himalayas (~4-6 km above msl) have been presented using MODIS 
Terra, and Aqua observations during the pre-monsoon season (please see section 5.1). The 
MODIS Terra and Aqua (deep-blue and deep-target aerosol optical depth - AOD) 
observations showing high AOD over Himalayan cryosphere regions is illustrated in section 
5.1. The significance of band 3 (blue band) in aerosol retrieval over land is also discussed in 
this section. 
The results from several Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 
(CALIPSO) observations (night-time) that show the vertical structure of major dust storms 
across the IG plains, Himalayas and Tibet Plateau is shown in this article (please see section 
5.2). The selected case studies of dust storms from CALIPSO observations for year 2010 not 
only cover the western, central, and eastern IG plains and Himalayas but also the entire pre-
monsoon season (April to June) (section 5.2). The impact of dust storms on the western, 
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central and eastern Himalayas and IG plains has been discussed using multiple parameters 
specifically developed for the detection of aerosols and cloud from CALIPSO observations. 
5. Impact of the entrainment of anthropogenic aerosols with the desert dust, during the 

long-range transport that leads to the complex climate forcing scenarios is discussed in 
section 6. 

2. Aerosols, temperature change, and retreat of glaciers 

2.1 Mid-latitude westerlies and dust over the Himalayas and IG plains 
The dust storms originating from Africa (Sahara desert), Arabia, Middle East, Afghanistan, 
and the Thar desert regions are transported by wind over to the IG plains and Himalayas 
(also called as Himalaya) due to the dominant westerly wind during the pre-monsoon 
season (Kayetha et al., 2007; Prasad et al., 2006b; Prasad and Singh, 2007a; Singh et al., 2004). 
The western and central part of Himalayas and IG plains are affected more than the eastern 
part as they are closer to the source of dust storms (Prasad and Singh, 2007a, 2007b). The 
glacier retreat pattern is different over the western and eastern Himalayas and Tibet plateau 
(He et al., 2003). The observed differences in the warming trends and glacial retreat of the 
western and eastern Himalayan range is very important in view of this contrast in aerosol 
loading over the region. A combination of the desert dust and aerosols resulting from 
anthropogenic sources (i.e. industrial, automobiles and crop, wood and animal waste 
burning) further complicates the interactions between the atmosphere and dynamics of 
glaciers in Himalayas (Ramnathan et al. 2005). 

2.2 Ice-cores: Evidence of dust and anthropogenic aerosols 
The influence of dust storms and anthropogenic activities on glacier dynamic has also been 
documented in the analysis of ice-cores from Tibet and Himalayan region (Duan, et al., 2007; 
Kang et al., 2000; Lee et al., 2008; Xu et al., 2007). The paleoclimatic records indicate that the 
South Asian monsoon and the mid-latitude westerlies affect the Himalayan glacier 
dynamics (Benn and Owen, 1998). The analysis of ice cores for multiple trace elements from 
the northeastern slope of Mt. Everest (central Himalayas) indicate high crustal enrichment 
factors that are attributed to the transport of anthropogenic aerosols to the high altitude 
region (Lee et al., 2008). The ice-cores from central Himalayas (Dasuopu glacier, 1988-1997) 
show seasonal variation of oxygen isotope and major ion concentrations (Ca2+, Mg2+, NH4+, 
SO42- and NO3-) that coincide with the pre-monsoon dust storm period (Kang et al., 2000). 
The increasing effect of anthropogenic aerosols due to increased burning of fossil fuel in the 
last decade is reflected in some Himalayan ice-core analysis. For instance, the sulfate record 
(1000-1997) from ice cores of Dasuopu glacier show increased anthropogenic influence since 
the 1930s. Moreover, the doubling of sulfate concentration since 1970 coincides with the 
increased anthropogenic activities such as growth of coal-fired power plants in and around 
the IG plains. Thus, the transport of anthropogenic aerosols together with dust storm is 
evident based on the analysis of ice-cores in the Himalayan range (Duan et al., 2007). 

2.3 Temperature change over Himalayan-Tibet glaciers 
Recent studies show an increasing temperature trend over the Himalayas, Tibetan Plateau 
and IG plains (Shrestha et al., 1999; Liu & Chen, 2000; Rikiishi & Nakasato, 2006; Arora et al., 
2005; Prasad et al., 2009). The Nepal Himalayas show a warming trend ranging between 
0.068 to 0.128 °C (1971-1994) (Shrestha et al., 1999). The Tibetan Plateau also show a 
warming trend of 0.16°C/decade for the annual mean during period 1955-1996 (Liu & Chen, 
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2000). A significant increase in the maximum temperature over the Kashmir region (+0.04 to 
0.05 °C/year) and the minimum temperature over the Jammu region (+0.03 to +0.08 °C/year) 
have been observed for period 1976-2007 (Jaswal & Rao, 2010). The northwestern Himalayan 
region shows significant rise in the air temperature by 1.6 °C during the last century based on 
data from three stations (Shimla in Himachal Pradesh, Srinagar and Leh in Jammu and 
Kashmir) (Bhutiyani et al., 2007). The inequality of tropospheric warming trend between the 
western and eastern IG plains and Himalayas has been observed from Microwave Sounding 
Unit (MSU) (Prasad et al., 2009). The western Himalayas show annual mean Temperature 
Middle Troposphere (TMT) warming of 0.48 K (0.016±0.005 K/year) during 1979-2008 
compared to 0.33 K (0.011±0.005 K/year) over the eastern Himalayas. Similarly, the annual 
mean TMT trend (0.018±0.005 K/year) is higher over the western IG plains compared to the 
eastern IG plains (0.013±0.004 K/year). Over the IG plains, the warming trend is prominent 
and statistically significant (>0.030 K/year) during the months of December, February, 
March and May. The warming trend is also generally positive during period December-May 
with higher values over the western side compared to the eastern side. In general, the 
warming trend over the northern India (the IG plains) during the winter months has been 
found to be positive and significant (maximum temperature trend at +0.29 °C/decade and 
minimum temperature trend at +0.38 °C/decade during February) compared to the 
southern parts of India (Jaswal, 2010). The ground stations based winter-time warming 
trend over the north-western Himalayas (Bhutiyani et al., 2007) is also corroborated by the 
MSU tropospheric temperature trends (Prasad et al., 2009) implying that the warming trend 
is also significant at the elevated levels of the atmosphere. Recently, Kulkarni et al. (2010) 
have found significant changes in the snow cover over western and central Himalayan river 
basins especially during the winter season. The warming trend is usually 2-3 times higher 
over the individual months (December-May). The maxima of the mean monthly warming 
TMT trend is around 0.48 and 0.51 K/decade (or 0.048±0.026 and 0.051±0.024  K/year) 
over the Himalayas and IG plains, respectively (Prasad et al., 2009). In contrast to the 
western side (Jammu and Kashmir region), the temperature trends have been found to be 
trendless over the stations of northeastern India (Jhajharia & Singh, 2010). 

2.4 Retreat of glaciers 
The Himalayan glaciers are among of the fastest receding glaciers of the world. The 
increasing rate of retreat of glaciers, that varies with the region, has a potentially detrimental 
effect on the available freshwater (river) resources especially in India, Pakistan, Bangladesh, 
and China (Kulkarni, 2007; Kulkarni & Bahuguna, 2002; Kulkarni et al., 2005; Krishna, 2005; 
Winiger et al., 2005; Rees & Collins, 2006; Kehrwald, et al., 2008). Recent studies document 
the alarming retreat of Parbati Glacier and Chenab, Parbati and Baspa basins since 1962 
(Kulkarni & Bahuguna, 2002; Kulkarni & Alex, 2003; Kulkarini et al., 2005). The Rongbuk 
Glacier (Mount Everest, central Himalayas) shows a retreat of 170-270 m in 30 years (1966-
1997) that is equivalent to a retreat speed of 5.5-8.7 m a−1 (Qin et al., 2000). Based on 
geological record, the Siachen Glacier in the western Himalayas, a 74 km long valley glacier 
which is also the largest glacier in the Karakoram and second largest glacier known outside 
the polar and sub-polar region, has receded by approximately 76 km compared to the past 
inter-glacial period (Raina & Sangewar, 2007; Upadhyay, 2009). In the last century, the 
Siachen glacier has receded during the period 1929 to 1958 compared to 1862 data, but it 
does not show any retreat since 1958 (Raina & Sangewar, 2007). The rate of retreat of several 
glaciers over the Himalayan and Tibetan Plateau has been updated and discussed by several 
recent studies (Prasad et al., 2009; Raina, 2010; Scherler et al., 2011). The degradation of a 

www.intechopen.com



 
Melting of Major Glaciers in Himalayas: Role of Desert Dust and Anthropogenic Aerosols 93 

glacier is accompanied by the debris cover around the glacier termini and the formation of 
lakes (Ageta et al., 2000). An 8 % loss of glacier area has been observed between 1963-1993 
over Bhutan (eastern Himalaya) (Karma et al., 2003). 

3. Glaciers and snow cover regions: Landsat and ASTER 

The monitoring of Himalayan glaciers started in India (1st phase: early 2000 - 1950 by the 
Geological Survey of India, GSI) with approximately 20 glaciers from Jammu and Kashmir in 
the west to Sikkim in the east. This was followed by a more systematic 2nd phase from the year 
1957 (International Geophysical Year) to 1970. The third phase started with the Induction of 
the International Hydrological Programme (1970) that covered a number of major glaciers: 
Siachen, Mamostang, Kumdan, Machoi in J&K, Barashigri, Sonapanii, Guglu in Himachal 
Pradesh, Gangotri, Arwa, Poting, Milam, Pindari, Shankalpa, Kalganga, Bamlas, Safed, 
Bhilmagwar, Pachu, Burphu in Uttarakhand and Zemu in Sikkim (Raina, 2010). All the 
glaciers under observation by Indian agencies (particularly GSI) show negative mass balance 
during 1970-2000. The decline in glacial mass is found to be highest in the western Himalayas 
(Jammu and Kashmir) compared to the eastern Himalayas (Sikkim), with a declining trend 
from west to east. However, some glaciers, such as Siachen in the western Himalayas, do not 
show appreciable change since 1970 (Raina, 2010; Raina & Sangewar, 2007). 
Himalayan snow cover and glaciers are a major source of water for major rivers of Asia, 
such as Indus, Ganga (or Ganges), Brahmaputra, Sutluj, Yamuna etc. Among them, the 
major rivers of Asia, such as Indus, Ganga and Brahmaputra, originate at the border region 
of India, Nepal and China (Prasad et al., 2009; Prasad & Singh, 2007b) (Figure 1, 2a). The 
point of origin of some of these rivers is shown in Figure 1. The surface reflectance (true 
color) images of a part of this region, based on the Landsat observations (since 1972) and 
ASTER (since 2000) show a conspicuous decline in the snow cover and the formation of 
numerous new lakes especially at the terminus of receding glaciers (Figure 2a). The Landsat 
images from 1972, 1989, 2000 and 2006 and ASTER images of 2000 show a gradual decline in 
the snow cover compared to the earliest image from 1972 (Figure 1b). The ASTER image 
obtained in 2008 show, however, an increased snow cover compared to year 2000 due to an 
increased snowfall over the region during 2008 which is corroborated with the maximum 
snow cover extent product derived from MODIS Terra at 500m resolution. The Landsat and 
ASTER images over the western Himalayas (Figure 2b) and central Himalayas (Figure 2c) 
also show significant change in the snow cover since 1972. The monitoring of the Bara Shigri 
shows the glacier frontal retreat as well as vertical shrinkage since 1950 (Raina, 2010). The 
photographs over the western Himalayas (nearby Bara Shigri Glacier region, Himachal 
Pradesh, Figure 2b) show contamination of glaciers and their discoloring (yellowish layer 
over the white snow) (Figure 2d). The nature of material as seen over the peak Himalayan 
region is not known and needs further investigation. Figure 2c show the glaciers situated in 
the Tibet region that is ~85 km north of Kathmandu, Nepal (near the Nepal and Tibet 
border). These glaciers south of Lake Paiku Tso (Tibet) show the retreat pattern as well as 
the formation of numerous new glacial lakes (at their terminus) due to the melting of snow 
and glaciers. The change in color (light blue to deep blue) in the satellite images indicates 
the melting of snow (ice phase) to water phase that usually appears as deep blue to black in 
true color images. The eastern Himalayas, border of Arunachal Pradesh (India) and Tibet 
(China) also show a decline in the snow cover as seen in the Landsat images taken during 
year 1988 and 2001 (Figure 2e). The major glaciers of the eastern Himalayas are showing 
signs of melting and formation of new lakes in the region. 
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Fig. 1. The point of origin and pathways of flow of major rivers of Asia (marked as orange 
lines) are shown against the background of maximum snow cover extent from MODIS Terra 
(marked as blue color). The violet dots represent major cities in the region and the green dot 
(or circle) represents the location of major glaciers that are covered in Figures 2a-f. 

 

 

Fig. 2a. The true color images of Himalayan snow cover and glaciers, near the source of 
origin of three major rivers of Asia (Indus, Ganga and Brahmaputra), from the Landsat 
series (1972, 1989, 2000, 2006) and ASTER (2000, 2008). (Location 1, in Figure 1). 
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Fig. 2b. The true color images of western Himalayan glaciers (Bara Shigri Glacier, Spiti 
Valley, Himachal Pradesh, near Parvati Parbat) and surrounding regions from the Landsat 
series (1972, 1989, 2000, 2005) and ASTER (2005, 2010). (Location 2, in Figure 1). 

The Goriganga river originates from the Milam Glacier at an altitude of ~3600 m and joins 
the Kali (Sharda) river downstream (after approximately 90 km) which finally merges into 
the Ganga river. The Landsat images from 1976, 1990, and 1999 depict changes in the snow 
cover and glacier over this region (Figure 2f). The Milam glacier is located NNE of Nanda 
Devi (7816 m, second highest mountain in India), a part of Garhwal Himalayas in the 
Uttarakhand State, India. Nanda Devi, means Bliss-Giving Goddess, is also regarded as the 
patron-goddess of the Uttarakhand Himalayas. The snow cover changes in numerous 
tributaries such as Goriganga and Kali River are important as they eventually feed into the 
main river Ganga. Moreover, small hydroelectric projects such as the Karmoli Lumti Tulli 
Hydroelectric project (55 MW) are proposed on the river Goriganga. The glaciers in the 
western Himalayas (near Doda, Jammu and Kashmir) show a decline in the snow cover 
along with the retreat of glaciers (Figure 2g). A significant trend in the warming of 
atmosphere (near-ground air temperature) has been observed over Jammu and Kashmir for 
period 1976-2007 (Jaswal & Rao, 2010). 
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Fig. 2c. The true color images of central Himalayan glaciers (near Shisha Pangma which is 
the 14th highest mountain in the world – 8013m) from the Landsat series (1988, 2000, 2006) 
show the melting and formation of new lakes in the region during 2000 and 2006 compared 
with 1988. (Location 3, in Figure 1). 
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Fig. 2d. The photographs over the western Himalayan region (approximately around the 
Parvati Parbat, Bara Shigri Glacier region, Himachal Pradesh, Figure 2b) show contaminated 
glaciers with a yellowish layer over the white snow and glacier. Photo Courtesy: Alexander 
Naumov. Date of the photographs: 28 Aug. 2010. 

 

 

Fig. 2e. The Landsat images during year 1988 and 2001 show a sharp decline in the snow 
cover and enhanced melting of glaciers in the eastern Himalayas near the state of Arunachal 
Pradesh (India) and Tibet (China) border. (Location 4, in Figure 1). 
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Fig. 2f. The Landsat images for year 1976, 1990 and 1999 over the Milam Glacier (Goriganga 
basin) in the central Himalayas (Uttarakhand State). (Location 5, in Figure 1).  

 

 

Fig. 2g. A comparison of the Landsat images from year 1975 and 2000 show a decline in the 
snow cover and enhanced melting of the western Himalayan glacier in between Doda (6573 
m) and Z1 peak (6250 m) in the State of Jammu and Kashmir (India). (Location 6, in Figure 1). 

www.intechopen.com



 
Melting of Major Glaciers in Himalayas: Role of Desert Dust and Anthropogenic Aerosols 99 

4. Journey of dust storm over the Indian sub-continent 

The first retrieval of aerosol loading over the land using POLDER (POLarization and 
Directionality of the Earth's Reflectances) data showed a dense concentration of aerosols 
over the Indo-Gangetic (IG) plains. A number of planned space-based sensors (MODIS 
Terra, MODIS Aqua, AIRS, PARASOL, ENVISAT, CALIPSO) and ground observations 
(AErosol RObotic NETwork - AERONET, Multi-wavelength radiometer – MWR, 
Microtops) have led to a better understanding of the amount, type and changes in 
aerosols over the Indian sub-continent and also the discovery of major aerosol “hot spots” 
over other regions of the globe. The desert dust, mixed with black carbon, is found to be 
one of the major sources of aerosols  that affect the regional climate and precipitation 
patterns worldwide (Gautam et al., 2009; Lau & Kim, 2006; Lau et al., 2006, 2008, 2010; 
Ramanathan et al., 2005; UNEP, 2009).  

4.1 Aerosol loading (dust and pollution) over the Indian sub-continent 
The Intergovernmental Panel on Climate Change (IPCC) report of 2001 (IPCC, 2001) 
outlined a low level of understanding on the aerosols and their potential impact on the 
regional vegetation and climate. Since 2000, the availability of daily global data on the 
aerosols and associated variables from MODIS Terra (since 2000) and Aqua (since 2002) 
have greatly improved understanding of the aerosols, major sources, intra- and inter-annual 
variability over the Indian sub-continent (Bhattacharjee, 2007; Prasad & Singh, 2007a, 2007c; 
Prasad et al. 2006a, 2006b). Further, the ground-based observations from stations such as 
Delhi (Microtops) and Kanpur (AERONET) since 2001 have been used extensively to 
understand the physical and optical characteristics of aerosols over the western and central 
IG plains respectively (Prasad & Singh, 2007a; Prasad et al., 2007; Srivastava et al., 2011). 

4.1.1 Pre-monsoon season: Dominance of desert dust 
The vast agricultural land, plains of Indus and Ganga river, suffer from high concentration 
of desert dust and anthropogenic aerosols. Figure 3 show very high aerosol loading (appear 
as orange to red color, AOD > 0.5) over the IG plains during the summer and winter seasons 
(mean of 2000-2008). This belt of high AOD is observed to be running parallel to the 
Himalayan Mountain range (Figure 3a). The retrieval of AOD, as shown in figures 3a,b is 
based on the dark-target (DT) algorithm which is more sensitive to the ocean or lake water 
and dense vegetation covered regions over the land. The seasonal distribution of aerosols 
shows a striking contrast between the summer and winter aerosol loadings over the IG 
plains. The winter season, which is largely devoid of the transported desert dust, show 
mostly fine anthropogenic aerosols while the summer season is dominated by the coarse 
desert dust aerosols that get mixed with the local anthropogenic aerosols (Prasad et al., 
2006a, 2006b). The long range transport of desert dust from the western sources gradually 
raises the aerosols loading over the IG plains during the period April to June. The 
AERONET data show that the mean AOD rises from 0.4-0.5 to 0.6-0.7 (>0.8-0.9 over the 
western side) from April to June months respectively due to the influence of these episodic 
dust storms (Prasad & Singh, 2007a). These pre-monsoon dust storms have been found to 
reach up to high altitude over Himalayas (Prasad & Singh, 2007b). The pre-monsoon dust 
storms are thereby affecting the regional atmospheric temperature and snow cover and 
hence glaciers dynamics over the Himalayas and Tibetan Plateau, especially the western and 
central regions (Lau et al., 2010; Prasad et al., 2009).  
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Fig. 3. (a) Mean MODIS Terra derived dark-target (DT) AOD (summer and winter season) 
over the Indian sub-continent and surrounding regions (Arabian Sea) during 2000-2008. (b) 
Inter-annual variability (2000 to 2008) of aerosol loading over the Arabian Sea and IG plains 
during the pre-monsoon season (April to June). 
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Figure 3b shows strong inter-annual variation of aerosol loading over the Indian sub-
continent and its surroundings. For instance, the year 2008 shows the highest aerosol 
loading over the Arabian Sea which is situated between the major dust sources and sink 
regions. This anomaly indicates that the emission as well as the transport of dust varies 
greatly every year. Thus the effect of desert dust on the regional climate of the IG plains 
varies year-to-year with the variation of influx of transported aerosols.  
Figure 4 show a simplified map of the location of major sources of dust over the IG plains. The 
satellite aerosol data as well as the dust transport model (HYbrid Single-Particle Lagrangian 
Integrated Trajectory - HYSPLIT) leads to the identification of these major sources. The 
HYSPLIT back-trajectory shows that the dust storm reaches over India in 2-5 days depending 
upon the distance of the source of desert dust (Prasad & Singh, 2007a). The dust storm from 
the arid regions of Afghanistan, Pakistan, Thar Desert (India) usually passes over land (land 
route) while the dust storm from Iran, other parts of Middle East and Sahara usually passes 
over the Arabian Sea (sea route) before reaching the IG plains (Figure 4). Thus the moisture 
associated with these dust storms varies with their route (Prasad & Singh, 2007a). 
 

 

Fig. 4. The location of major sources of dust storms over the Indian sub-continent is marked 
as green broken circles (Prasad and Singh, 2007a). The two major pathways of dust storms, 
the sea route passing through the Arabian Sea and the land route, are marked by the orange 
line. The background show Aura derived UV aerosol index during a dust storm event (May 
7, 2005) that illustrates the transport of dust aerosols through the Arabian Sea before 
reaching the IG plains. 
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The valley-like topography of the IG plains bounded by high altitude Himalayas (~ 4-6 km) 

in the north and Vindhyan mountain range (~700m) and Chotanagpur plateau in the south 

and Rajmahal hills in the southeast causes channelization of the dust storm as it moves from 

the west (Delhi and Jaipur) to the east (Kolkata and Dhaka) (see Figure 5a). This figure 

shows the three-dimensional topographical set-up of the study region (the Himalayas and 

IG plains). The west to east journey of the desert dust in the IG plains, capped by towering 

Himalayas in the north, not only affects the aerosol loading in the entire IG plains but also 

the Himalayas because a portion of the desert dust (mixed with local pollutants) also 

reaches the high altitude region over Himalayas. Because the dust storm is much stronger 

over the western and central IG plains as compared with the eastern zone, the direct and 

indirect effect of dust related loading is more prominent and frequent in the western and 

central Himalayas. However, some of the episodes of dust have been found to be reaching 

up to the Eastern Himalayas (East Nepal and Sikkim Himalayas). The evidence for transport 

of dust up to Himalayas is discussed in section 5. 

4.1.2 Winter season: Dominance of anthropogenic emissions 
The winter aerosol loading, mostly anthropogenic, is also high in the entire IG plains 

(valley region) (Figures 3a, 5a). During the winter season, fine aerosols emitted by the 

thermal power plants, industries, vehicles, coal-fired brick kilns, and bio-fuel burning 

stoves dominate the total aerosol loading over the IG plains (Di Girolamo et al., 2004; 

Prasad et al., 2006a; Ramanathan & Ramana, 2005). Although the dust storms are rare 

during this period, the satellite observations and overall assessment of aerosols indicate a 

dominant anthropogenic component exists over the IG plains. The bio-mass and bio-fuel 

burning and vehicular emission are traditionally considered to be one of the highest 

contributors to the winter aerosols (Di Girolamo et al., 2004; Garg et al., 2001; Gadi et al., 

2003; Ramanathan & Ramana, 2005). Recent studies on the emissions from the major 

thermal power plants over India show that the coal fired power plants and similar 

industries, such as smelters, are one of the major contributors of gaseous (tropospheric 

NO2) and particulate (black carbon, fly ash from coal) pollution (Ghude et al., 2008; 

Prasad 2007; Prasad et al., 2011) (Figure 5b). The NO2 emissions (Ozone Monitoring 

Instrument, OMI Aura) from these coal based power plants situated in low populated 

regions such as Agori in the central India are found to be much higher than the largest 

city such as Delhi (with ~25 million human and ~5.6 million vehicular population) 

(Prasad et al., 2011). The presence of fine anthropogenic aerosols and gaseous pollutants 

such as ozone, NOx and SOx, very high humidity (>90%), near zero or calm wind, and 

near-ground (10-100 m) boundary layer leads to a severe problem of dense fog and high 

ozone during December and January (Di Girolamo et al., 2004; Prasad et al., 2006a; 

Ramanathan & Ramana, 2005). The development of dense fog with increasing intensity, 

duration, and frequency over the last two decades (1990-2010) is a relatively recent 

phenomena compared to the beginning of the Industrial (power utility) revolution in 

India (1970-1980) because most of the power plants were setup in the region since 1980 

(Prasad et al., 2011) along with the gradual increase in the vehicular population. The 

disruption of air-traffic, ground-traffic and railways due to the dense fog during the 

winter season has increased the awareness to this problem among the public and media in 

recent years. 
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Fig. 5. (a) The three-dimensional image illustrates the valley type topography of vast alluvial 
IG plains that is bounded by the high altitude Himalayas in the north and Vindhyan 
mountain range in the south. The mean aerosol loading over the Indian sub-continent 
during the winter season (December and January, 2004-2008) illustrates high AOD over the 
entire IG plains. (b) The mean annual tropospheric NO2 over the Indian sub-continent as 
measured by OMI Aura. The black lines or bar represent major (>100 MW) thermal power 
installations in the region where the length of bar is directly proportional to its capacity. The 
seasonal distribution of NO2 is available at Prasad et al. (2011). 
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The recent advances made by the atmospheric aerosols science community through the 
space based multi-sensor monitoring, dust modeling and ground dust observations had led 
to an increased awareness among the public and media (newspapers, magazines, radio, and 
television). Figure 6 shows the arrival of a dust storm over the Delhi region on May 13, 2008 
(using Total Ozone Monitoring Satellite - TOMS aerosol index) and its after-effect on the 
Delhi metropolitan area on May 13-14, 2008. Similar reports appeared in the print and 
television media from several cities west of Delhi (Lucknow and Kanpur, located in central 
IG plains) on the subsequent day. The reports of loss of life, property, respiratory problems, 
and air and ground traffic disruptions etc, in various media sources show the 
unpreparedness of the agencies and organizations affected or responsible for responding to 
such events. Though the awareness about the after-effects of dust storms are increasing in 
the region, an integrated approach (a decision support system) to tap the potential of 
forecasting dust storms using near real-time satellite observations, such as the MODIS 
direct, broadcast together with the dust transport models and ground based observations to 
warn the public and industrial sectors affected by these events is still lacking. 
 

 

Fig. 6. The left panel shows arrival of the dust storm over Delhi region on May 13, 2008 
using TOMS aerosol index (AI). The high values of TOMS AI (2.5-5) illustrate the aerosol 
loading associated with the dust storm. The right panel shows the after-effects of the dust 
storm over Delhi that was reported in several leading national newspapers (such as 
Hindustan Times, New Delhi edition on May 14, 2008). 
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5. Journey of dust to high altitudes over Himalayas and Tibetan Plateau 

The episodes of dust storms are very frequent during the pre-monsoon season. The Figure 3 

emphasizes the seasonal and inter-annual variation and distribution of aerosols over the 

land and oceans. Figure 3 also shows some notable blank regions in Pakistan, Iran, 

Afghanistan, Oman and Sahara. This is due to the fact that the traditional Dark Target (DT) 

AOD retrieval algorithms do not capture the aerosol loading over very bright arid or semi-

arid desert surfaces that have sparse or negligible vegetation cover.  

To overcome this limitation, incorporating the blue spectral band (Deep-Blue, DB algorithm) 

enhances the accuracy and frequency of the retrieval of AOD over such land surfaces as they 

are very sensitive to the dust (Hsu et al., 2006; Ginoux et al., 2010). For instance, a 

comparison of a true color image (composite of red, green, and blue – RGB: Band 1, 4, and 

3), reflectance from the blue band (MODIS Band 3, 479 nm), MODIS Terra AOD (only DB), 

MODIS Terra AOD (both DT and DB) and AOD-like scale for values derived from the blue 

band (level 2, collection 5.1) is shown for a dust storm that affected the IG plains on June 7, 

2003 (Figure 7). The area covered by the dust storm which is visible as a very bright surface 

in the true color image appears as a prominent region with very high reflectance in the band 

3. The MODIS Terra AOD, based on the DB approach, retrieves the dust loading over bright 

surfaces, such as Thar desert, while a combination of both DT and DB approach gives better 

results (Figure 7). However, there is a scope for an improvement in the AOD retrieval 

procedure as both DB and DT misses the central median line of dust storm that appears as 

blank region bounded by very high AOD values. The scaling of values like AOD from the 

blue band (no other correction is applied) shows the continuity of dust storm and its 

perimeter. The band 3 by itself, presents scope for improvement in the aerosol retrieval 

along with other bands such as band 11 and 12 (used for cloud detection) that helps in 

distinguishing the dust aerosols from surroundings.  

Therefore, to identify and quantify the aerosol loading due to the major dust storms, we 

have utilized a combination of DT and DB algorithm to retrieve the AOD over land and 

ocean using the MODIS sensor on the Terra and Aqua. In this section, we present dust storm 

cases that highlight the journey of dust up to high altitudes over Himalayas using the 

MODIS (column AOD) and CALIPSO (vertical profile) observations.  

5.1 Dust over Himalayas: Evidences from MODIS Terra and Aqua 
A day to day analysis of aerosol data from MODIS during May 28 - June 15 show a number 

of dust storm events that affected the IG plains and Himalayas during the year 2003. The 

ground-based AERONET station at Kanpur also confirms these dust storms (Prasad & 

Singh, 2007a). Figure 8 shows a three day composite (maxima) of aerosol loading (Level 2, 

version 5.1, 10km grid) using both DT and DB algorithm to maximize the coverage over 

land and ocean. The composite of May 28-30 show very high AOD over the land and 

Arabian Sea. Similarly, a composite of June 6-8 also show very high AOD over the land and 

Arabian Sea. The path and source of the dust storm is emphasized by very high AOD over 

the western region that shows continuity up to the IG plains. During this period, the ground 

observed AOD (approximately every 15 minutes) from the Kanpur AERONET station 

(Prasad & Singh, 2007a) also showed arrival of a number of dust storms over the Kanpur 

city (central IG plains). 
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Fig. 7. The true color image (band combination: RGB: 1,4, and 3) based on the MODIS Terra 
observations during a dust storm event on June 7, 2003. The dust affected region is 
prominent in the band 3 (blue band: 479 nm). The AOD (only DB) and AOD (combination of 
DB and DT) from level 2 Terra (collection 5.1) show quantitative aerosol loading due to the 
dust storm (marked as green to deep red color). The MODIS AOD like scaling using only 
MODIS band 3 (blue band) without any other filtering for cloud etc., illustrates its 
usefulness in deriving AOD over bright (arid) and low vegetative surfaces. 
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Fig. 8. Three day maxima of aerosol loading derived from MODIS Terra level 2 AOD (10 km 
grid, collection 5.1) during May 28-30 (top panel) and June 6-8 (bottom panel) illustrates 
source and path of transport of dust storms through the land and sea route as marked in 
Figure 4. The high aerosol loading over the IG plains (appear as deep red color) is primarily 
attributed to the desert dust brought by such dust storms. 

5.1.1 Dust over the major rivers of Asia 
A closer look at the daily aerosol retrieval (at 10 km grid resolution) using both DB and DT 
algorithm clearly shows a very high AOD over the high-altitude snow covered and glacier 
regions of Himalayas (Figure 9). The data used is a daily level 2 AOD, collection 5.1 from 
MODIS Terra and Aqua (Figure 9). The white color features in figure 9 represents the high 
altitude snow cover and Himalayan glaciers that are situated at an average height of ~4-6 km 
above the msl. Further, the region shown in these figures is interesting and valuable as three 
major rivers of Asia (Indus, Ganga –  Brahmaputra) originate from here and depend on the 
snow cover and glacier melt for base river flow. Numerous other rivers such as Yamuna 
(passing through Delhi), Sutluj, and tributaries of river Ganga also originate from here. Very 
high AOD over the Himalayas is clearly visible during these dust storm events (May 31 to 
June 2, 2003 and June 12-13, 2003) (Figures 9a,b). Both Terra and Aqua (pre-noon and after-
noon overpass) data show high AOD, visible as green-yellow-orange-red, over the Himalayan 
region. The MODIS AOD images also show that the dust storm also affects the Nepal 
Himalayas (both western and eastern Nepal) as it moves from the west to the east. The level-2 
AOD is highly useful for such studies as it captures the dust storm and its reach in greater 
detail compared to the level 3 AOD at 100 km grid that has been found to be grossly missing 
the event of dust over Himalayas primarily due to its coarser resolution, incomplete retrieval 
over all pixels, and the binning method used to produce the level 3 data. The vertical profile of 
dust from CALIPSO is not available for these events as it was launched during the year 2006.  
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Fig. 9. The MODIS Terra and Aqua level 2 column AOD (collection 5.1) images during a dust 
storm episode on (a) May 31 and June 2, 2003 and (b) June 12-13, 2003, illustrates that the dust 
storm reaches up to the high-attitude Himalayan snow covered and glacier regions. The white 
color objects along the border of India, Nepal and China show the Himalayan snow cover and 
glaciers near the origin of three major rivers of Asia (Indus, Ganga, and Brahmaputra). 
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5.2 Dust over Himalayas: Evidences from CALIPSO vertical profiles 
CALIPSO uses an active laser beam that provides unique information about the vertical 
structure of aerosols and clouds in the atmosphere. A number of parameters from 
CALIPSO such as the total attenuated backscatter at 532 nm, 1064 nm, their attenuated 
color ratio or c-ratio (1064/532nm), perpendicular backscatter at 532nm, and 
depolarization ratio or d-ratio provides critical information and identification of the dust 
(or clouds) and also its vertical structure. The aerosol related parameters from other 
sensors onboard Terra and Aqua (MODIS), CNES/Myriade (PARASOL), AURA, Earth 
Probe –EP (TOMS) etc., gives information only about the total column of atmosphere. To 
obtain evidence of dust storms reaching up to the high altitude Himalayas and Tibetan 
Plateau (~4-6 km), a vertical profile of the atmosphere when the major dust storms hits 
the region is vital. Further, such vertical profiles of the dust storms are needed over 
different regions (western, central and eastern) to assess the impact of dust. In this section, 
we present some evidence of dust reaching Himalayas in all three aforementioned regions 
during the entire pre-monsoon period (April, May and June) when the dust storm activity 
is highest over the IG plains. All the CALIPSO vertical profiles (0-20 km or 0-8 km) 
presented here depict the time of overpass (in UTC), and latitude-longitude (location) in 
the X-axis (bottom and top of x-axis respectively). The surface elevation along the path of 
CALIPSO is marked as a thick black line in Figures 10-15. The inset shows the path of 
CALIPSO overpass over the Globe (black line) and the study region (pink line) (Figures 
10-15).  

5.2.1 Dust and anthropogenic aerosols over Central Himalayas and IG plains 
The vertical profile of the atmosphere (0-20 km), as measured by CALIPSO, over passes 
through the central IG plains (State of Uttar Pradesh), Himalayas (State of Uttarakhand – 
formerly Uttaranchal, and western Nepal), Tibetan Plateau and Taklamakan desert is 
shown in Figure 10. The vertical profile from 41°-16° N (during 20:34 to 20:41 UTC or 2:04 
to 2:11 am local India Standard Time – IST) show the vertical structure of a major dust 
storm passing through the central IG plains on April 22, 2010. Very high concentration of 
dust is observed from night-time CALIPSO backscatter (532nm) over the IG plains that 
are reaching up to the 4-5 km height near Himalayas and its foothill region. Dust is also 
observed over the Taklamakan desert. Other parameters from CALIPSO, such as 
perpendicular attenuated backscatter (532nm), total attenuated backscatter at 1064nm, c-
ratio, and d-ratio, also support the presence of a major dust storm (Figure 12a). The cloud, 
with very high backscatter, at ~20° N latitude, blocks the backscatter from the atmosphere 
(appear as deep blue) below it. The perpendicular attenuated backscatter (532nm) show 
the scattering of laser beams by the dust particles which appear as colored dots against a 
blue background in Figure 12a.  

5.2.2 Dust and anthropogenic aerosols over Western Himalayas and IG plains 
During year 2010, one of the major dust storms is found to be reaching up to ~7 km over the 
western IG plains and western Himalayas on May 27 (Figure 11). The ceiling of the dust 
storm over the states of Punjab and Rajasthan (part of the western IG plains) is between 5-7 
km. The height of dust (~7 km) is extending higher than the range of height of the Kashmir 
and Himachal Pradesh Himalayas (~2-5.5 km) as seen from the CALIPSO profile along with 
the surface elevation profile (Figure 11). This night-time profile was obtained during 21:05 to 
21:11 UTC (or 2:35 to 2:41 am local time or IST). 
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Fig. 10. The atmospheric profile (total attenuated backscatter at 532 nm, 0-20 km) of a dust 
storm event as measured by the night-time CALIPSO overpass over the central IG plain, 
Himalayas and Tibetan during April 22, 2010 (at 2:04 to 2:11 am IST).  

 

 

Fig. 11. The atmospheric profile (total attenuated backscatter at 532 nm, 0-20 km) of a dust 
storm event as measured by the night-time CALIPSO overpass over the western IG plain 
and western Himalayas during May 27, 2010 (at 2:35 to 2:41 am IST).  
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No dust is observed over the Taklamakan desert (near ground) during this overpass 
compared to the previous example (April 22, 2010, Figure 10). However, a thick layer of very 
high scattering particles (or cloud) is observed over the Himalayas and Taklamakan desert 
between altitudes 6-12 km that needs further investigation as the dust may get mixed with 
clouds that change the characteristics of aerosols and clouds (Figure 11). Other parameters 
from CALIPSO, shown in Figure 12b, mark the presence of various dense layers of dust 
between 26°-30° N (at 0-1 km height and from 1-8 km) that shows the state of vertical  mix 
up of the dust in the atmosphere. Further, the dense layer of dust between 0-1 km show a 
gradual increase in the height to 0-4 km as it moves northwards between 30°-33.15° N. 
 

(a) (b)  

 
 

Fig. 12. The atmospheric profiles (0-8 km, y-axis) of a dust storm event using multiple 
parameters as measured by the night-time CALIPSO overpass over (a) the central IG plain 
and Himalayas during April 22, 2010 (at 2:04 to 2:11 am IST), and (b) the western IG plain 
and Himalayas during May 27, 2010 (at 2:35 to 2:41 am IST). The x-axis (top and bottom) of 
Figures 12(a) and 12(b) is same as that of Figures 10 and 11 respectively. 
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5.2.3 Dust and anthropogenic aerosols over Eastern Himalayas and IG plains 
The night-time profile obtained from CALIPSO on the next day (May 28, 2010) shows the 

vertical structure of the same dust storm as it passes over the eastern IG plains (State of 

Bihar and Jharkhand) (Figure 13). The upper limit of dust storm in the eastern side of the IG 

plains is observed to be ~5 to 5.5 km while a dense layer of dust is observed at 2-3 km 

between 20°-26° N latitude. The vertical profile was obtained during the night-time over 

pass of CALIPSO (20:10 to 20:17 UTC or 1:40 to 1:47 am local time or IST). The dense layers 

of the dust storm are clearly visible in other parameters obtained from CALIPSO (Figure 

15a). The CALIPSO profiles corroborate the transport of aerosols over the eastern Nepal 

Himalayas and its foothill region, as obtained from MODIS Terra and Aqua column AOD. 

High column AOD (at 10 km horizontal grid) from Terra and Aqua is observed over the 

snow and glacier cover regions during the episodes of major dust storms (May-June 2003) in 

the central and eastern Himalayas (Figure 3b, 3c). However, the dust over the eastern 

Himalayas (eastern Nepal and Sikkim) is relatively less prominent than the western 

Himalayas as the average height of the Himalayas is more in the eastern side and the dust 

storm gets weakened in strength (dust load, wind speed) and height as it moves to the 

eastern side which is approximately 1000-1500 km eastwards from the western end.  

5.3 Dust storms during June (prior to the arrival of monsoon system) 
The dust storms are also common during June which is followed by intense rains due to the 

arrival of monsoon over the IG plains. Figure 14 shows the vertical profile of one of the 

major dust storms hitting the western IG plains during the late June (June 28, 2010). The 

ceiling of the dust storm over the western IG plains is ~6 km. Thick dense layer of dust is 

observed between 0-2 km at 25°N latitude that gradually increases in height to 2-4 km at 

32°N latitude. The density of dust changes with the height and latitude which is clearly 

visible in all the parameters shown in Figure 15b. Presence of dust is also observed in the 

atmosphere over the Taklamakan Desert (Figures 14, 15a). 

6. The contribution by anthropogenic aerosols  

The arrival of desert dust over the IG plains, either through the sea route (Arabian Sea) or 

land route (Rajasthan, Pakistan), leads to a mixing of coarse desert dust with the finer 

anthropogenic emissions (such as black carbon) from the major point sources. Figure 5b 

shows the presence of large networks of power plants around Gujarat (near Arabian Sea), 

north Pakistan, and the western IG plains (Punjab, Delhi). The passage of dust storms 

through these pockets of major point sources, before reaching the Himalayan range, 

increases the complexity of the physical (optical) and chemical nature of otherwise dust 

dominant aerosols. 

Desert dust brought by the dust storms is rich in minerals such as quartz, feldspar, mica, 

alumino-silicates, calcite, carbonates, iron oxides etc. The anthropogenic emissions, emitted 

by burning of fossil fuel (coal and petroleum), biomass and biofuel burning, are mainly 

comprised of black carbon – BC (elemental and organic carbon), sulfate, and nitrate aerosols. 

The BC is widely known as a major climate forcing agent as it strongly absorbs the solar 

radiation which also varies with the nature, type, and source of black carbon aerosols (Lau 

et al., 2010; Yasunari et al., 2010). 

www.intechopen.com



 
Melting of Major Glaciers in Himalayas: Role of Desert Dust and Anthropogenic Aerosols 113 

 

Fig. 13. The atmospheric profile (0-20 km) of a dust storm event as measured by the night-
time CALIPSO overpass over the eastern IG plain, Himalayas and Tibetan Plateau during 
May 28, 2010 (at 1:40 to 1:47 am IST). The total attenuated backscatter (at 532 nm) shows the 
vertical structure of pre-dominantly dust aerosols up to ~5.5 km.  

 

 

Fig. 14. The atmospheric profile (0-20 km) of a dust storm event as measured by the night-
time CALIPSO overpass over the western IG plain, and Himalayas during June 28, 2010 (at 
2:35 to 2:41 am IST). The total attenuated backscatter (at 532 nm) shows the vertical structure 
of pre-dominantly dust aerosols up to ~6 km.  
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(a)    (b)  

 
 

Fig. 15. The atmospheric profiles (0-8 km, y-axis) of a dust storm event using the multiple 

parameters as measured by the night-time CALIPSO overpass over (a) the eastern IG plain 

and Himalayas during May 28, 2010 (at 1:40 to 1:47 am IST), and (b) the western IG plain 

and Himalayas during June 28, 2010 (at 2:35 to 2:41 am IST). The x-axis (top and bottom) of 

Figures 15(a) and 15(b) is same as that of Figures 13 and 14 respectively. 

The entrainment of anthropogenic aerosols with the desert dust, during the long-range 

transport, leads to the complex climate forcing scenarios because the radiative impact of the 

mixed aerosols depends on the chemical composition and optical characteristics of the 

fraction of individual components and also on the type of mixed state – internal (one or 

more of smaller aerosol particles are embedded in larger host particles), external (various 

aerosol species exists independently), and semi-external (aerosol aggregate - physical 

www.intechopen.com



 
Melting of Major Glaciers in Himalayas: Role of Desert Dust and Anthropogenic Aerosols 115 

contact between two or more aerosol particles) mixed state. Recent studies involving the 

microscopic examination of the desert dust over polluted environments (anthropogenic) 

have found coating of desert dust with black carbon and other compounds of nitrate and 

sulfate that significantly alters the optical and radiative properties (such as single scattering 

albedo, extinction efficiency) of dust aerosols (Bauer et al., 2007; Buseck & Posfai, 1999; 

Chylek et al., 1995; Huang et al., 2010; Li & Shao, 2009; Yasunari et al., 2010). The desert dust 

also causes reduction in the albedo of contaminated snow over the Himalayas (Negi & 

Kokhanovsky, 2011).  

Surface roughness of the snow increases due to the deposition of dust over the smooth 

snow surface. Over the years, the cycle of snow melting, dust deposition and snowfall 

leads to the formation of alternate layers of dust and snow. This may lead to increased 

melting as the presence of a very thin dust layer changes the friction within a snow pack. 

Thus, the snow pack in the desert dust affected region is more prone to melting than a 

dust-free region. 

The vertical mixing (elevated layer, up to ~7 km) of dust with anthropogenic emissions 

have an impact on the radiation budget and precipitation over the IG plain and the high 

altitude Himalayan mountain range (Lau et al., 2006, 2008; Lau & Kim, 2006; Prasad & 

Singh, 2007; Prasad et al, 2009; Ramanathan et al., 2005). The deposition of desert dust and 

other pollutants as well as the changes in atmospheric temperatures (lower and middle 

tropospheric temperature) over the region due to the presence of mixed aerosols 

negatively impacts the snow cover and glaciers of Himalayas and Tibetan Plateau, 

particularly the western (Kashmir and Himachal Pradesh) and central (Uttarakhand, and 

west Nepal) Himalayas which are closer to the source and experience more frequent dust 

storms compared to the eastern Himalayas (eastern Nepal, Sikkim, Bhutan, and 

Arunachal Pradesh) (Das et al., 2010; Prasad & Singh, 2007b; Prasad et al., 2009; Yasunari 

et al., 2010). 

7. Summary and conclusions 

The Himalayan and Tibet Glaciers, source and origin of major rivers of Asia, are showing 

a variable rate of change of the snow cover and glacier retreat during the last several 

decades (since 1970) due to increasing effects of the climate variability and change, and 

ever increasing anthropogenic aerosols. The true color images from the earliest available 

satellite records from Landsat series (since 1972) and ASTER (since 2000) show substantial 

changes in the snow cover and glacial termini, with some spatial variability, over different 

regions of the Himalayas. The formation of numerous lakes, especially at the terminus of 

numerous glaciers, is a common feature compared to the 1970-1980 images. The ASTER 

images (2000-2010) also show inter-annual changes in the snow cover besides decadal 

changes since 1972.  

The presence of dense networks of coal-fired power plants over the Indian sub-continent 

(emitting black carbon and various other aerosols) along the pathways of transport of desert 

dust leads to the mixing of dust and anthropogenic aerosols before reaching the Himalayan-

Tibet region. As the anthropogenic activities, such as burning of fossil fuel, have tremendously 

increased during 1980-2010 over the IG plains, their adverse impact on the snow-cover and 

glaciers are discernible in space-based observations over the Himalayas, especially the western 

and central Himalayas. These observations are corroborated with independent measurement 
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of concentrations of anthropogenic particles (aerosols) in the ice-cores that show an increase 

over the recent decades as compared with preceding decades.  

The daily aerosol observations from MODIS Terra and Aqua show long-range transport of 
desert dust to high altitude Himalayas. This is also supported by air-mass transport models 
such as HYSPLIT. Models and satellite observations indicate that the arid and desert regions 
of Sahara, Middle East, Iran, Afghanistan, Pakistan and Thar-desert are the major sources of 
desert dust. The major pathways of transport of dust (land and sea route) show large inter-
annual variability in the dust concentration. For instance, the aerosol loading during year 
2008 was abnormally high compared to years 2000-2007 over the land and sea-route 
(Arabian Sea) and over the dust sink region (IG plains). 
The long term aerosol observations from MODIS Terra and Aqua and the vertical profile of 
pre-monsoon (April-June) dust storms from CALIPSO show direct evidence of the transport 
of mixed dust and anthropogenic aerosols over the high altitude Himalayas (approximately 
4-6 km above the msl). A combination of DT and DB AOD from MODIS Terra and Aqua 
satellites provides better results as compared with previous approaches to aerosol retrieval 
methods using the same observations (i.e. DT AOD method only). The current study shows 
that the elevated aerosol layer is visible up to ~7 km above the msl during the dust storm 
episodes. The vertical mixing of dust and pollutants also changes the radiation budget of the 
troposphere. The desert dust mixed with anthropogenic aerosols (black carbon) affects the 
atmospheric conditions (enhanced heating, change in the temperature gradient, and the 
monsoon circulation pattern), the reduction in snow albedo, and the roughness of layered 
snow deposits, leading to an increased melting of the snow pack. The melting of the 
cryosphere regions in the Himalayas is likely to accelerate due to growing anthropogenic 
aerosols from emissions in the IG plains. This, in turn, may result in the warming of the 
troposphere during December-May as indicated by atmospheric temperature trends derived 
from the Microwave Sounding Unit (MSU) during 1979-2008 (Prasad et al., 2009). Such 
changes would have profound socio-economic implications over the IG plains in the future. 
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