6 research outputs found

    Core-scale characterisation of flow in tight Arabian formations

    Get PDF
    Peer reviewedPublisher PD

    Novel metered aerosol valve

    Get PDF
    The design and performance of a new valving mechanism for portable pressurized spraying devices is described, where the propellant in the device is a safe gas (so-called compressed gas) propellant rather than the current liquefied gases all of which are either volatile organic compounds or greenhouse gases. The valve sprays a fixed volume of liquid when the spraying actuator is depressed, as is essential used medical sprays, such as pressurized metered dose inhalers and nasal sprays, and also for automatic (wall-mounted) aerosol delivery systems for air-fresheners, insecticides and disinfectants. For ‘compressed gas’ aerosol formats, there is no flash vaporization of propellant so that pumping liquid from a metering chamber and atomization to form a spray must be achieved entirely by designing some means of using the pumping action of the gas in the container to act upon the liquid in the metering chamber. The new design utilizes a loosely fitting spherical piston element and a simple arrangement of a concentric housing and a moveable valve stem, such that liquid flow paths between the different elements are automatically closed and opened in the correct time sequence when the valve stem is depressed and released. Spraying data show excellent repeatability of liquid sprayed per pulse throughout the lifetime of device and drop sizes that are acceptable for devices such as air-fresheners and nasal sprays. The valve has only one additional component compared with liquefied gas metered valves and can be straightforwardly injection moulded. As will be explained, previous attempts failed due to expense, complexity and unreliability. Keywords Aerosol valve, spray metering, insert, inhaler, air-freshene

    Next generation of consumer aerosol valve design using inert gases

    Get PDF
    The current global consumer aerosol products such as deodorants, hairsprays, air-fresheners, polish, insecticide, disinfectant are primarily utilised unfriendly environmental propellant of liquefied petroleum gas (LPG) for over three decades. The advantages of the new innovative technology described in this paper are: (i) no butane or other liquefied hydrocarbon gas; (ii) compressed air, nitrogen or other safe gas propellant; (iii) customer acceptable spray quality and consistency during can lifetime; (iv) conventional cans and filling technology. Volatile organic compounds and greenhouse gases must be avoided but there are no flashing propellants replacements that would provide the good atomisation and spray reach. On the basis of the energy source for atomising, the only feasible source is inert gas (i.e. compressed air), which improves atomisation by gas bubbles and turbulence inside the atomiser insert of the actuator. This research concentrates on using ‘bubbly flow’ in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. Using a vapour phase tap in conventional aerosol valves allows the propellant gas into the liquid flow upstream of the valve. However, forcing bubbly flow through a valve is not ideal. The novel valves designed here, using compressed gas, thus achieved the following objectives when the correct combination of gas and liquid inlets to the valve, and the type and size of atomiser ‘insert’ were derived: 1. Produced a consistent flow rate and drop size of spray throughout the life of the can, compatible with the current conventional aerosols that use LPG: a new ‘constancy’ parameter is defined and used to this end. 2. Obtained a discharge flow rate suited to the product to be sprayed; typically between 0.4 g/s and 2.5 g/s. 3. Attained the spray droplets size suited to the product to be sprayed; typically between 40 mm and 120 mm

    Solubility trapping as a potential secondary mechanism for CO2 sequestration during enhanced gas recovery by CO2 injection in conventional natural gas reservoirs : an experimental approach

    Get PDF
    This study aims to experimentally investigate the potential of solubility trapping mechanism in increasing CO2 storage during EGR by CO2 injection and sequestration in conventional natural gas reservoirs. A laboratory core flooding process was carried out to simulate EGR on a sandstone core at 0, 5, 10 wt% NaCl formation water salinity at 1300 psig, 50 °C and 0.3 ml/min injection rate. The results show that CO2 storage capacity was improved significantly when solubility trapping was considered. Lower connate water salinities (0 and 5 wt%) showed higher CO2 solubility from IFT measurements. With 10% connate water salinity, the highest accumulation of the CO2 in the reservoir was realised with about 63% of the total CO2 injected stored; an indication of improved storage capacity. Therefore, solubility trapping can potentially increase the CO2 storage capacity of the gas reservoir by serving as a secondary trapping mechanism in addition to the primary structural and stratigraphic trapping and improving CH4 recovery
    corecore