30 research outputs found

    Recensements africains : 1ère partie : monographies méthodologiques

    No full text

    Changes in Oil Composition of two Sunflower Varieties Induced by Salt-Stress

    No full text

    Physiological and biochemical responses for two cultivars of Pisum sativum (''Merveille de Kelvedon'' and ''Lincoln'') to iron deficiency conditions

    No full text
    The aim of this work was to compare the tolerance and the physiological responses to Fe deficiency of two Pisum sativum cultivars ("Merveille de kelvedon" and "Lincoln") commonly cultivated in Tunisia. We studied the effects of Fe deficiency on: (i) chlorophyll content, relative growth rate (RGR) and Fe status, (ii) rhizosphere acidification, (iii) changes under Fe-deficient conditions in the activities of two root enzymes, the first related to the proton extrusion (H+-ATPase) and the second to iron reduction mechanism (Fe(III)-chelate-reductase: FCR). Three treatments were used: C, control, complete nutrient solution (CNS) containing 30 \u3bcM Fe; DD, direct deficiency, CNS without iron; ID, indirect deficiency, CNS containing 30 \u3bcM Fe + lime. Fe deficiency led to a significant decrease of chlorophyll content in both cultivars. The below reduction was observed in Fe-deficient plants of Merveille de Kelvedon. In addition, relative growth of shoots and whole plant was not affected by Fe deficiency. H+-ATPase and FCR activities were more stimulated in Merveille de Kelvedon than in Lincoln, under DD and ID Fe deficiency. The capacity of this cultivar to maintain plant growth and to preserve adequate chlorophyll synthesis under iron-limiting conditions is related to its better Fe-use efficiency, in addition to its high acidification and root reducing capacities. This allows us to suggest that Merveille de Kelvedon is more effective in overcoming Fe deficiency than Lincoln

    Response of two lines of Medicago ciliaris to Fe deficiency under saline conditions

    No full text
    The aim of this research was to study the responses of two lines of Medicago ciliaris: TN11.11 and TN8.7 to iron deficiency under saline conditions. However; the paper showed also the results of a preliminary study which report the contrastive responses of the two lines to salinity. We found that plant growth and chlorophyll content of TN11.11 line were more affected by salinity than TN8.7. The severity of symptoms was linked to the sodium accumulation in shoots as well as a limitation of potassium uptake. Our data allowed us to note that TN8.7 line is less sensitive and can better cope with the salinity. Concerning the effect of salinity on iron deficiency responses, we noted that root PM H +-ATPase and FCR activities were reduced when iron deficiency was associated with salinity. This probably explained the decrease of Fe uptake. On the contrary, PEPC activity was not affected

    Root antioxidant responses of two Pisum sativum cultivars to direct and induced Fe deficiency

    No full text
    The contribution of antioxidant defence systems in different tolerance to direct and bicarbonate-induced Fe deficiency was evaluated in two pea cultivars (Kelvedon, tolerant and Lincoln, susceptible). Fe deficiency enhanced lipid peroxidation and H2O2 concentration in roots of both cultivars, particularly in the sensitive one grown under bicarbonate supply. The results obtained on antioxidant activities (SOD, CAT, POD) suggest that H2O2 accumulation could be due to an overproduction of this ROS and, at the same time, to a poor capacity to detoxify it. Moreover, under bicarbonate supply the activity of POD isoforms was reduced only in the sensitive cultivar, while in the tolerant one a new isoform was detected, suggesting that POD activity might be an important contributor to pea tolerance to Fe deficiency. The presence of bicarbonate also resulted in stimulation of GR, MDHAR and DHAR activities, part of the ASC-GSH pathway, which was higher in the tolerant cultivar than in the sensitive one. Overall, while in the absence of Fe only slight differences were reported between the two cultivars, the adaptation of Kelvedon to the presence of bicarbonate seems to be related to its greater ability to enhance the antioxidant response at the root level

    Variability of metabolic responses and antioxidant defence in two lines of Medicago ciliaris to Fe deficiency

    No full text
    The aim of this work was to evaluate the effects of Fe deficiency on the activity of several metabolic enzymes (PEPC, PK, PFK, G6PDH and G3PDH), along with the function of the antioxidant enzymes (SK, SDH and PAL) in two lines of Medicago ciliaris, TN11.11 and TN8.7. Plants were grown in a greenhouse under controlled conditions. After germination and pre-treatment, plants were transferred for hydroponic culture. Three treatments were used: 30 \u3bcM Fe (+Fe), 0 \u3bcM Fe (-Fe) and 30 \u3bcM Fe + 10 mM NaHCO3 (+Bic.). Our results showed that all the enzymatic activities increased in extracts of Fe-deficient roots when compared to the control. The above increases in the activity were particularly evident for the bicarbonate-treated roots of TN11.11. PEPC activity was increased by 277% in TN11.11 plants with the addition of bicarbonate to the nutrient solution. Our results indicate also that, in the two lines of Medic, the activity of SK, SDH and PAL in leaves and roots were increased under Fe deficiency (either direct or induced by bicarbonate), to a greater extent in TN11.11 plants. Furthermore, a considerable increase in lipid peroxidation of roots and leaves of Fe-deficient plants was observed in TN8.7 when compared to TN11.11 plants. Our data suggest that the TN11.11 line is more effective in overcoming Fe deficiency than TN8.7. The tolerance of TN11.11 to Fe deficiency is related to its ability to modulate the carbohydrate metabolism and to increase secondary metabolism pathways
    corecore