6 research outputs found

    Quantitative Optical Studies of Oxidative Stress in Rodent Models of Eye and Lung Injuries

    Get PDF
    Optical imaging techniques have emerged as essential tools for reliable assessment of organ structure, biochemistry, and metabolic function. The recognition of metabolic markers for disease diagnosis has rekindled significant interest in the development of optical methods to measure the metabolism of the organ. The objective of my research was to employ optical imaging tools and to implement signal and image processing techniques capable of quantifying cellular metabolism for the diagnosis of diseases in human organs such as eyes and lungs. To accomplish this goal, three different tools, cryoimager, fluorescent microscope, and optical coherence tomography system were utilized to study the physiological metabolic markers and early structural changes due to injury in vitro, ex vivo, and at cryogenic temperatures. Cryogenic studies of eye injuries in animal models were performed using a fluorescence cryoimager to monitor two endogenous mitochondrial fluorophores, NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide). The mitochondrial redox ratio (NADH/ FAD), which is correlated with oxidative stress level, is an optical biomarker. The spatial distribution of mitochondrial redox ratio in injured eyes with different durations of the disease was delineated. This spatiotemporal information was helpful to investigate the heterogeneity of the ocular oxidative stress in the eyes during diseases and its association with retinopathy. To study the metabolism of the eye tissue, the retinal layer was targeted, which required high resolution imaging of the eye as well as developing a segmentation algorithm to quantitatively monitor and measure the metabolic redox state of the retina. To achieve a high signal to noise ratio in fluorescence image acquisition, the imaging was performed at cryogenic temperatures, which increased the quantum yield of the intrinsic fluorophores. Microscopy studies of cells were accomplished by using an inverted fluorescence microscope. Fixed slides of the retina tissue as well as exogenous fluorophores in live lung cells were imaged using fluorescent and time-lapse microscopy. Image processing techniques were developed to quantify subtle changes in the morphological parameters of the retinal vasculature network for the early detection of the injury. This implemented image cytometry tool was capable of segmenting vascular cells, and calculating vasculature features including: area, caliber, branch points, fractal dimension, and acellular capillaries, and classifying the healthy and injured retinas. Using time-lapse microscopy, the dynamics of cellular ROS (Reactive Oxygen Species) concentration was quantified and modeled in ROS-mediated lung injuries. A new methodology and an experimental protocol were designed to quantify changes of oxidative stress in different stress conditions and to localize the site of ROS in an uncoupled state of pulmonary artery endothelial cells (PAECs). Ex vivo studies of lung were conducted using a spectral-domain optical coherence tomography (SD-OCT) system and 3D scanned images of the lung were acquired. An image segmentation algorithm was developed to study the dynamics of structural changes in the lung alveoli in real time. Quantifying the structural dynamics provided information to diagnose pulmonary diseases and to evaluate the severity of the lung injury. The implemented software was able to quantify and present the changes in alveoli compliance in lung injury models, including edema. In conclusion, optical instrumentation, combined with signal and image processing techniques, provides quantitative physiological and structural information reflecting disease progression due to oxidative stress. This tool provides a unique capability to identify early points of intervention, which play a vital role in the early detection of eye and lung injuries. The future goal of this research is to translate optical imaging to clinical settings, and to transfer the instruments developed for animal models to the bedside for patient diagnosis

    Perceptions of Manager's Regarding the Role of Educational Factors in Creativity and Job Innovations of Entrepreneurship and Successiveness of Agricultural Cooperatives

    No full text
    The role of education in promoting culture of entrepreneurship in agricultural sectors is important.  The purpose of this survey was to identify educational factors influencing entrepreneurship of agricultural cooperatives, evaluation of creativity and job innovation and entrepreneurial spirit of Khuzestan cooperatives managers (Ahvaz and Dezful). The population consisted of 100 agricultural cooperatives and Samples were 80 agricultural cooperatives in Khuzestan with using Krejcie and Morgan Table. Then 2 managers and board of directors for each cooperative (totally 160) were selected. Data collected by a questionnaire and personal interview. For analyzing data SPSS (16) was used. Validity of the questionnaires has been confirmed by faculty members and experts. Its reliability confirmed by using of pilot test in Ahvaz rural cooperatives. Cronbach's Alpha value was reported for technical and educational factors as 0.85 percent. Result indicated that education level of members and Implementation of educational courses with entrepreneurship target, rate of creativity and job innovation and entrepreneur spirit were important in cooperative’s success. Technical skills of manager, educational level, board of director’s professional and technical skills had most importance respectively

    Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells

    Get PDF
    Reactive oxygen species (ROS) play a vital role in cell signaling and redox regulation, but when present in excess, lead to numerous pathologies. Detailed quantitative characterization of mitochondrial superoxide anion (O2•−) production in fetal pulmonary artery endothelia cells (PAECs) has never been reported. The aim of this study is to assess mitochondrial O2•− production in cultured PAECs over time using a novel quantitative optical approach. The rate, the sources, and the dynamics of O2•− production were assessed using targeted metabolic modulators of the mitochondrial electron transport chain (ETC) complexes, specifically an uncoupler and inhibitors of the various ETC complexes, and inhibitors of extra-mitochondrial sources of O2•−. After stabilization, the cells were loaded with nanomolar mitochondrial-targeted hydroethidine (Mito-HE, MitoSOX) online during the experiment without washout of the residual dye. Time-lapse fluorescence microscopy was used to monitor the dynamic changes in O2•− fluorescence intensity over time in PAECs. The transient behaviors of the fluorescence time course showed exponential increases in the rate of O2•− production in the presence of the ETC uncoupler or inhibitors. The most dramatic and the fastest increase in O2•− production was observed when the cells were treated with the uncoupling agent, PCP. We also showed that only the complex IV inhibitor, KCN, attenuated the marked surge in O2•− production induced by PCP. The results showed that mitochondrial respiratory complexes I, III and IV are sources of O2•− production in PAECs, and a new observation that ROS production during uncoupling of mitochondrial respiration is mediated in part via complex IV. This novel method can be applied in other studies that examine ROS production under stress condition and during ROS-mediated injuries in vitro

    Tissue-Specific Microparticles Improve Organoid Microenvironment for Efficient Maturation of Pluripotent Stem-Cell-Derived Hepatocytes.

    No full text
    Liver organoids (LOs) are receiving considerable attention for their potential use in drug screening, disease modeling, and transplantable constructs. Hepatocytes, as the key component of LOs, are isolated from the liver or differentiated from pluripotent stem cells (PSCs). PSC-derived hepatocytes are preferable because of their availability and scalability. However, efficient maturation of the PSC-derived hepatocytes towards functional units in LOs remains a challenging subject. The incorporation of cell-sized microparticles (MPs) derived from liver extracellular matrix (ECM), could provide an enriched tissue-specific microenvironment for further maturation of hepatocytes inside the LOs. In the present study, the MPs were fabricated by chemical cross-linking of a water-in-oil dispersion of digested decellularized sheep liver. These MPs were mixed with human PSC-derived hepatic endoderm, human umbilical vein endothelial cells, and mesenchymal stromal cells to produce homogenous bioengineered LOs (BLOs). This approach led to the improvement of hepatocyte-like cells in terms of gene expression and function, CYP activities, albumin secretion, and metabolism of xenobiotics. The intraperitoneal transplantation of BLOs in an acute liver injury mouse model led to an enhancement in survival rate. Furthermore, efficient hepatic maturation was demonstrated after ex ovo transplantation. In conclusion, the incorporation of cell-sized tissue-specific MPs in BLOs improved the maturation of human PSC-derived hepatocyte-like cells compared to LOs. This approach provides a versatile strategy to produce functional organoids from different tissues and offers a novel tool for biomedical applications
    corecore