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ABSTRACT 

QUANTITATIVE OPTICAL STUDIES OF OXIDATIVE STRESS  

IN RODENT MODELS OF EYE AND LUNG INJURIES 

 

by 

 

Zahra Ghanian 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Professor Mahsa Ranji 

 

 

Optical imaging techniques have emerged as essential tools for reliable assessment of 

organ structure, biochemistry, and metabolic function. The recognition of metabolic markers for 

disease diagnosis has rekindled significant interest in the development of optical methods to 

measure the metabolism of the organ.  

The objective of my research was to employ optical imaging tools and to implement signal 

and image processing techniques capable of quantifying cellular metabolism for the diagnosis of 

diseases in human organs such as eyes and lungs. To accomplish this goal, three different tools, 

cryoimager, fluorescent microscope, and optical coherence tomography system were utilized to 

study the physiological metabolic markers and early structural changes due to injury in vitro, ex 

vivo, and at cryogenic temperatures.  

Cryogenic studies of eye injuries in animal models were performed using a fluorescence 

cryoimager to monitor two endogenous mitochondrial fluorophores, NADH (nicotinamide adenine 

dinucleotide) and FAD (flavin adenine dinucleotide). The mitochondrial redox ratio (NADH/ 

FAD), which is correlated with oxidative stress level, is an optical biomarker. The spatial 

distribution of mitochondrial redox ratio in injured eyes with different durations of the disease was 

delineated. This spatiotemporal information was helpful to investigate the heterogeneity of the 

ocular oxidative stress in the eyes during diseases and its association with retinopathy. To study 
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the metabolism of the eye tissue, the retinal layer was targeted, which required high resolution 

imaging of the eye as well as developing a segmentation algorithm to quantitatively monitor and 

measure the metabolic redox state of the retina. To achieve a high signal to noise ratio in 

fluorescence image acquisition, the imaging was performed at cryogenic temperatures, which 

increased the quantum yield of the intrinsic fluorophores. 

Microscopy studies of cells were accomplished by using an inverted fluorescence 

microscope. Fixed slides of the retina tissue as well as exogenous fluorophores in live lung cells 

were imaged using fluorescent and time-lapse microscopy. Image processing techniques were 

developed to quantify subtle changes in the morphological parameters of the retinal vasculature 

network for the early detection of the injury. This implemented image cytometry tool was capable 

of segmenting vascular cells, and calculating vasculature features including: area, caliber, branch 

points, fractal dimension, and acellular capillaries, and classifying the healthy and injured retinas. 

Using time-lapse microscopy, the dynamics of cellular ROS (Reactive Oxygen Species) 

concentration was quantified and modeled in ROS-mediated lung injuries. A new methodology 

and an experimental protocol were designed to quantify changes of oxidative stress in different 

stress conditions and to localize the site of ROS in an uncoupled state of pulmonary artery 

endothelial cells (PAECs). 

Ex vivo studies of lung were conducted using a spectral-domain optical coherence 

tomography (SD-OCT) system and 3D scanned images of the lung were acquired. An image 

segmentation algorithm was developed to study the dynamics of structural changes in the lung 

alveoli in real time. Quantifying the structural dynamics provided information to diagnose 

pulmonary diseases and to evaluate the severity of the lung injury. The implemented software was 
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able to quantify and present the changes in alveoli compliance in lung injury models, including 

edema.  

In conclusion, optical instrumentation, combined with signal and image processing 

techniques, provides quantitative physiological and structural information reflecting disease 

progression due to oxidative stress. This tool provides a unique capability to identify early points 

of intervention, which play a vital role in the early detection of eye and lung injuries. The future 

goal of this research is to translate optical imaging to clinical settings, and to transfer the 

instruments developed for animal models to the bedside for patient diagnosis.  
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Chapter 1 

Introduction and Background 
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1 Introduction and Background 

Biophotonics is a relatively new field at the intersection of science and technology that has 

the potential to revolutionize medicine as we know it. The rapid development of optical imaging 

technology has yielded powerful tools for the study of disease on all scales, from single cells to 

tissue materials and whole organs.  

Among optical imaging systems, fluorescence imaging techniques provide the capability 

of monitoring the metabolic health of cells, tissue, and organs. Auto fluorescent mitochondrial 

proteins, and Reactive Oxygen Species (ROS), are used as indicators for mitochondrial function, 

and are monitored by applying in vitro approaches. Organs can also be monitored in the cryogenic 

temperature or ex vivo as well as in vivo. The knowledge of the absorption and fluorescence 

characteristics of the auto fluorescent proteins within the body and biological samples is key. This 

knowledge allows us to determine the concentrations of these fluorophores correlated to the 

mitochondrial redox state and oxidative stress level. Monitoring the metabolic state of cells with 

low mitochondrial density requires exogenous fluorophores to probe the mitochondrial ROS 

production rate, which is correlated with oxidative stress. The development of the fluorescent 

imaging and image processing techniques including cryo fluorescence imaging and fluorescent 

microscopy to study metabolism in live cells and organs will be described in the following sections. 

Optical Coherence Tomography (OCT) is another imaging system that was utilized in this 

study. This imaging technique has the ability to visualize the tissue without the need to remove or 

excise portions of a specimen. This technique enables cross-sectional real time imaging of the 

internal microstructure in biological systems by measuring backscattered light. Utilizing a spectral 

domain OCT to monitor and study the structural dynamics in organs will be presented. Moreover, 
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the development of an image processing software to quantify the morphological changes for the 

diagnosis purposes will be explained. 

The overall aim of the research presented here is developing biomedical fluorescence 

imaging techniques and employing optical imaging instruments to provide critical information 

about the health of the biological sample. This information bridges molecular structure and 

physiological function, which is the most important process in understanding, treatment, and 

prevention of disease. 

1.1 Author Major Contributions 

My first contribution is the modification and implementation of a cryo fluorescence imager 

to increase lateral resolution of this optoelectronic device to visualize the morphology and 

biochemistry of mouse eyes in 3D and to distinguish different structures of eyes. The cryoimager 

monitors the relative concentration of two intrinsic mitochondrial fluorophores, namely NADH 

and FAD. To obtain high resolution fluorescence images of the small mouse eye samples, the 

detection path of the system was modified and the working distance between the sample and lens 

was decreased to obtain a stronger signal. In addition, a high-resolution zoom lens with less 

aberration as well as a smaller optical filter wheel was used between the lens and camera to 

improve the magnification. The new setup was completed by resolving non-homogeneity 

illumination problem.  

The modified cryoimager provided high resolution fluorescence images of 2mm mouse 

eyes in 3D which enabled me to distinguish between different layers of eye including sclera, 

choroid, and retina. The thickness of these layers is ranging from 10 microns to 200 microns and 

can be detected based on the fluorescence intensity levels. I have developed an image processing 

algorithm which analyzes two z-stacks of raw images of eye in both NADH and FAD channels to 
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evaluate metabolic redox state (correlated with redox ratio, FAD/NADH) in the retina 3D volume 

quantitatively and statistically. 

 The new set up of the cryoimager combined with aforementioned image processing tool 

provide a package to quantitatively measure the metabolic state of the retina in the onset and 

progression of different diseases in rodent models. Using this package, I have studied a severe 

vascular dysplasia (HHT-1 or Endoglin+/-) with the aim of investigating spatial and temporal 

changes of physiological information in the eye due to this disease. I quantitatively evaluated 

cellular redox state and oxidative stress (OS) in retina at three stages of this disease (3 weeks, 6 

weeks and 10 months). 

I have also developed and implemented a second-generation cytometry tool based around 

a first-generation software developed in Biophotonics Lab. Our cytometry GUI is a multi-

parameter quantification method which quantifies retinal vascular injuries in microscopic 

images of clinically relevant eye diseases, including diabetic retinopathy. The method I have 

developed extracts five unique features of retinal vasculature, such as the number of endothelial 

cells versus pericytes, the number of ghost capillaries, vasculature area, and fractal dimension. The 

gold standard is the manual evaluation of all these parameters under the microscope, which is a 

tedious task and prone to error. Using this multi-parameter analysis method, I have studied not 

only early structural changes in retinal vasculature due to diabetic retinopathy (DR) and Bcl-2 

deficiency, but also the effect of disease progression on vasculature morphology. Quantification 

using this method will be helpful in evaluating physiological and pathological retinopathy in a 

high throughput and reproducible manner. 

In addition to eyes, lungs were another organ of interest and focus of my research. One of 

the aims of my lung studies was to evaluate structural changes in lungs due to injury for the purpose 
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of real-time disease diagnosis. To satisfy this need, I have developed a fast image processing 

algorithm to detect alveolar walls and quantify dynamics of alveoli morphological changes in lung 

in rodent models of edema injury. This method extracts and statistically quantifies four parameters, 

including diameter and area of each alveolus, total number of alveolar sacs, and alveoli expiration 

compliance. This experimental study was conducted ex vivo using SD-OCT to capture real-time 

cross sectional images of alveolar structure in a ventilated and buffer perfused isolated rat lung.  

My research has also focused on developing a novel model that accounts for the dynamics 

of the metabolism and oxidative stress (OS) in live cells. Oxidative stress is extensively involved 

in pathologies of various diseases. However, the spatiotemporal dynamics of OS are not well 

understood. Using fluorescence time lapse microscopy, I quantified and modeled the dynamics of 

OS concentration in lung injuries. My work led to design of a new methodology and an 

experimental protocol to quantify the changes of OS in different stress conditions, and even 

localize the site of OS in an uncoupled state of pulmonary artery endothelial cells (PAECs). The 

results demonstrated that mitochondrial respiratory chain uncoupling and inhibiting involves the 

exponential up-regulation of the superoxide level, leading to more mitochondrial damage. The 

method I developed is also able to partition the OS production from different mitochondrial 

complex sites and provides a way to identify the source of OS production. This study sets the stage 

for applying our methods to study different injuries in vitro. 

As a side project, I have also been working on a computational image processing algorithm 

to solve an inverse problem for fluorescence lifetime tomography in turbid media. This algorithm 

was part of a Diffuse Optical Tomography project to confirm targeting the Rhodopsin channel for 

functional brain imaging. The algorithm I developed was based upon conjugate gradient method 

for least squares and provided the spatial images of fluorophore concentrations as well as lifetime 
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of fluorophores. The developed technique resulted in 100% localization accuracy and gave 

quantifications which were accurate within 15% of the true values for known strongly scattering 

phantoms with sparse fluorophore distributions.   

Conducting all of these experimental studies required the assembly of the required tools, 

and designing experimental protocols to study the metabolism in the cryogenic, ex vivo, in vivo 

and in vitro regimes. For each regime used in this study, unique treatment and preparation of the 

tissues, as well as proper imaging and acquisition methods are required. Lungs and eyes, PAEC 

cells and retina microscope slides were provided by the VA hospital, the Medical College of 

Wisconsin, and University of Wisconsin-Madison. SD-OCT system was designed and 

implemented by our collaborators in the BIST lab, University of Wisconsin-Milwaukee. 
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1.2 Biological background 

1.2.1 Cell physiology and metabolism 

All known living organisms are composed of cells [3]. Cells are the structural and 

functional units of life. A generalized structure of the animal cell is shown in figure 1-1(a) [4]. 

Many injuries and diseases can be traced back to irregularities in the behavior within the cell [5]. 

Early detection and treatment of such injuries could lead to a significantly lower rate of permanent 

damage and help in reducing further therapy's costs.  

Although all sub-cellular organelles are essential for the organism to remain healthy and 

viable, the mitochondrion (see figure 1-1(b)) [6, 7] plays the most critical role for metabolic 

processes [8]. The mitochondria are responsible for the chemical reactions resulting in providing 

energy for the cells and are necessary for sustaining life in a biological organism [9]. 

The metabolic process is generally achieved through a series of reactions referred to as 

aerobic respiration [10]. In this process, a chain of the mitochondrial coenzymes is oxidized 

resulting in adenosine triphosphate (ATP), which is the unit of energy for the cells. The amount of 

energy that can be supplied for the cell is positively correlated to the amount of oxygen present in 

the mitochondria, and an irregular amount of oxygen in the cell and its surrounding environment 

(oxidative stress) leads to perturbation to cell functions and eventually cell death. The majority of 

energy in the cell is produced this way via the electron transport chain [8], which is represented in 

figure 1-2 [11]. 
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The electron transport chain is a complex system of chemical reactions that take place in 

the inner mitochondrial membrane and is used to create a proton gradient across the membrane by 

pumping excess hydrogen ions into the mitochondria's "intermembrane space" [12]. In the electron 

transport chain, two coenzymes, nicotinamide adenine dinucleotide (NADH) [13] and flavin 

adenine dinucleotide (FADH2) [14], are oxidized through a series of protein complexes resulting 

in a release of protons, which are pumped into the intermembrane space using a portion of the 

energy released, thus creating a proton gradient. 

Finally, ATP is generated by the release of these protons to the intermembrane space 

through ATP synthase [8] in conjunction with adenosine diphosphate (ADP) and inorganic 

phosphate. A change in the oxidation state of these two cofactors, or in other words, a change in 

the concentration of the oxidized form, is a direct marker of a change in tissue oxidation status and 

metabolism [15]. 

 

         

                        (a)                                                                       (b) 

Figure 1-1: (a) Cell structure including its organelles with the nucleus and mitochondria pointed out [9], (b) 

Mitochondrion and its organelles. [18]. 
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1.2.2 Oxidative stress 

ROS are chemically reactive molecules containing oxygen and play a vital role in cell 

signaling, redox regulating, and, when in excess, leading to oxidative stress that is extensively 

involved in pathologies of various diseases. The production of ROS is an inevitable consequence 

of physiological aerobic metabolism. Incomplete processing of oxygen and release of free 

electrons result in the production of mitochondrial ROS. It has been shown, however, that 

mitochondria produce ROS at a rate higher than their scavenging capacity, resulting in incomplete 

metabolism of approximately 1–3% of the consumed oxygen [16, 17]. The byproducts of 

incomplete oxygen metabolism are superoxide (•O2ˉ), hydrogen peroxide (H2O2), and hydroxyl 

radical (OH•). Oxidative stress, which is often due to an irregularity in the amount of oxygen 

introduced to the mitochondria, represents an imbalance between production and consumption of 

ROS. An excessive amount of ROS or the production of peroxides and free radicals, can cause 

 

Figure 1-2: Simplified block diagram of the electron transport chain. 
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damage to any and all parts of a cell [18]. This is especially important given that a variety of 

diseases can disrupt the balance of oxygen flow into and around cells, causing improper function 

of the mitochondria, and thus an increased rate of cell death via apoptosis or necrosis [19]. A slight 

increase in oxidative stress leads to mitophagy, in which the mitochondria degrades, but the cell 

manages to recycle the nutrients released. However, as oxidative stress increases, the cells begin 

to undergo apoptosis, or programmed cell death, or in extreme cases, necrosis, which is abnormal 

cell death. In many cases, the amount of oxygen available to a cell can accurately represent the 

health of the cell and to be used as a diagnostic tool. This is especially true in cases related to 

mitochondrial dysfunction or diseases related to oxidative stress. In these cases, the oxidation state, 

or redox state of the tissue serves as a sensitive and reliable measure for the evaluation of cell 

behavior [20]. 

1.3 Fluorescence 

1.3.1 Principles of fluorescence 

Fluorescence optical imaging techniques have the potential to investigate tissue’s health in 

real time, in a non-destructive manner, and in intact organs, both in vivo and ex vivo [21-27]. These 

techniques can also monitor metabolic state in diseases of clinically important disorders such as 

cardiopulmonary injuries, and diabetic retinopathy. Using the fluorescent signals of intrinsic 

fluorophores present in the cell, it is possible to determine the oxidation status of the cell. In these 

studies, fluorescence imaging is used to study organ specific bioenergetics [1, 28, 29], mainly eye 

[1] and lung [30, 31].  

A fluorophore is a chemical compound, which can emit photons with specific wavelengths, 

when excited with specific higher-energy photons [32]. The basic principle of fluorescence is 

shown in a Jablonski diagram in figure 1-3. 
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Figure 1-3: Jablonski Diagram of Fluorescence. Fluorescence as a result of molecule excitation. Blue lines indicate 

excitation, gold lines relaxation, and green lines emission of fluorescence [4]. 

 

First, the molecules of fluorophores are in an initial energy state, resting state S0. Once the 

resting molecule is exposed to a source of energy, it absorbs the energy from the incident source 

and goes to an excited energy state (S1, or S2). Once there, a portion of the energy is lost to lattice 

vibrations and other avenues prior to the release of a photon and relaxation to the initial energy 

state. In the transition back to the ground state, there is a probability, termed the fluorescence 

quantum yield, of emitting photons of lower energy than the excitation photons. These emitted 

photons, can be collected by a photoelectric device to quantify the amount of energy released [33].  

For intrinsically fluorescent molecules, there is a narrow range of photon energies, which 

can cause this excitation, corresponding to the allowable energy states of the molecule. Since the 

energy of a photon is inversely proportional to its wavelength, or directly proportional to the 

frequency, this means that only a specific range of wavelengths can be used to excite a given 

molecule. In addition, because the emitted photon has an energy equal to the energy released when 

the molecule transitions back to its ground state, the wavelength of this light has a narrow band.  



 

 

16 

 

      

Finally, since the molecule lost some energy along other pathways, the emitted photon has 

a lower energy, and therefore longer wavelength compare to the excitation light. This phenomenon 

is known as Stokes shift, and is shown in figure 1-4 [34, 35]. Thus, the excitation (absorption) and 

emission spectra for each molecule are different. This phenomenon can be exploited through the 

use of optical filters or dichroic mirrors to separate the excitation and emission light. This way, 

only the emitted fluorescence signal will reach the detector. The narrow spectra of both the 

excitation and emission light is actually beneficial, since multiple molecules can be monitored 

sequentially, provided that their fluorescence spectra are not completely overlapping [20]. 

The probability of emitting a fluorescent photon after absorption of an excitation photon, 

termed the fluorescence quantum yield. This probability is a convenient measurement of the 

efficiency of the fluorescence process. It is defined as the ratio of the number of photons emitted 

to the number of photons absorbed [34, 35]. 

 

 

Figure 1-4: Stokes shift. 
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1.3.2 Intrinsic mitochondrial fluorophores 

Intrinsic fluorophores are naturally occurring fluorophores. There are several cellular 

intrinsic flourophores within tissues including NADH, flavins, tryptophan, collagen, and 

porphyrins, which are useful to measure the functional and structural capacity of the tissue. Two 

of these fluorophores, NADH and FAD (one of the flavins), are of particular interest since they 

play an essential role in the metabolic pathway of mitochondria. These two flourophores originate 

from first and second complex sites of the electron transport chain [8] and can be used as markers 

of cellular metabolic state. The spectra of these auto-fluorescent coenzymes are shown in figure 

1-5 [36, 37].  

 

NADH is primarily fluorescent in the reduced biochemical state, whereas FAD only 

fluoresces in the oxidized form. Therefore, the ratio of the concentration of these two fluorophores, 

called the mitochondrial redox ratio, can show the oxidative state of the metabolism within the 

tissue [38]. This ratio is beneficial as a quantitative marker of tissue metabolism, which is 

independent of the number of mitochondria. Since NADH and FAD (the oxidized form of FADH2) 

 

 

Figure 1-5: Excitation and emission spectra of NADH and FAD. 
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are autofluorescent, they can be monitored without exogenous labels by noninvasive optical 

fluorescence techniques [24]. 

NADH and FAD can be excited by filtering a white light such as light from a mercury arc 

lamp at their excitation wavelengths. NADH has a maximum in its excitation spectrum at around 

340 nm and an emission maximum at 460 nm, and FAD has its excitation maximum at 448 nm 

and a maximum in the emission spectrum at 520 nm. The overlap between NADH emission and 

FAD excitation requires that the two fluorophores be excited and detected sequentially, but the 

fact that the emission spectra do not overlap with each other allows for selective detection of 

fluorescence between the two fluorophores. Hence, by detecting the fluorescence of each of these 

fluorophores, one can obtain a measure of the oxidation state of cells within an organ.  

Although redox ratio is independent of the number of mitochondria, each of NADH and 

FAD fluorescent signals are dependent on the concentration of mitochondria. These signals are 

also affected by the presence of interfering factors such as other endogenous fluorophores with the 

same excitation/emission spectra (namely NADPH and collagen). This factor can be effectively 

canceled out using redox calculations. As for the interfering fluorophores, since they are not 

involved in the mitochondrial electron transport chain, their fluorescence does not interfere with 

NADH and FAD fluorescent signals (see chapter 2 for more details). As a result, the changes in 

the measured redox ratio are due to changes in the mitochondrial redox state, and are not impacted 

by the other endogenous fluorophores present in the tissue [28]. 

1.3.3 Florescence imaging techniques  

Fluorescence optical techniques provide quantitative physiological and structural 

information reflecting disease progression. Furthermore, these techniques have been shown to 

possess a high sensitivity and specificity for discriminating between diseased and healthy tissue 
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[39]. Optical imaging of the intrinsic fluorophores namely, NADH and FAD, have been widely 

used as indicators of tissue metabolism in injury due to hypoxia [22, 40], hyperoxia [30, 41], 

ischemia-reperfusion [22, 40], diabetes [42] and also as indicators for the response of different 

treatments such as photodynamic therapy [43], and cancer therapy [44-46].  

Various groups have used optical monitoring of cancer tissue in different diseases. Mycek 

et al. have used an optical technique in studies of pancreatic cancer in clinical practice [47]. 

Ramanujam et al. have shown the ability of endogenous redox imaging to differentiate normal, 

precancerous, and cancerous squamous epithelial tissues by multiphoton microscopy [48] [39]. 

Mayevsky's group has used NADH spectroscopy and blood oxygenation in brain tumor 

metabolism studies in vivo [49-51]. Kortum's group examined optical imaging for diagnosis of 

cervical cancer [52], and Vo-Dinh et al. investigated an optical fluorescence technique for 

esophageal cancer and dysplasia diagnosis [53]. Georgakoudi et al. have worked on endogenous 

redox ratio in human epithelial cell apoptosis studies [54].  

Our group has recently studied different organs including lungs and hearts in the injury 

models such as ischemia-reperfusion and hyperoxia [22, 30], as well as retina in diabetic 

retinopathy [1, 55] and retinitis pigmentosa models [148].  

Overall, we have used optical biopsy, cryoimaging, fluorescence spectroscopy and 

microscopy to monitor metabolic state in diseases of clinically important disorders [1, 28, 30] [22, 

30] as well as the effect of the metabolic therapy on heart and kidney [28]. The future goal of our 

research is to translate optical imaging to clinical avenues, and to transfer the instruments 

developed for animal models to bedside for patient diagnosis.  
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1.4 Rodent injury models and diseases  

ROS has been implicated in the pathogenesis of many acute and chronic ocular disorders. 

ROS has important impact during angiogenesis, and their aberrant production is linked to 

retinopathy of prematurity and diabetic retinopathy [56, 57]. Diabetes plays crucial role in 

regulation of apoptosis and vascular function of retina and pathogenesis of diabetic retinopathy. 

Diabetes is a systematic disease, which can eventually lead to blindness [58-62]. Diabetic 

retinopathy affects up to 80 percent of all patients who have had diabetes for 15 years or more 

[63]. Despite these intimidating statistics, much of the damage could be reduced if there was early 

detection and proper treatment.  Hyperglycemia or high blood sugar is a condition in which an 

excessive amount of glucose circulates in the blood plasma. Excess generation of highly reactive 

free radicals, largely due to hyperglycemia, causes oxidative stress, which further exacerbates the 

development and progression of diabetes and its complications [62-64]. Two rodent models of 

retinopathies were investigated in this study including, Akita/+ (diabetes), and Bcl-2 deficient 

(Bcl-2-/-) mice.  

The B Cell Lymphoma Gene (BCL-2) gene plays an essential role during eye development 

and lack of bcl-2 (Bcl-2-/- mice) enhances apoptosis affecting eye development and growth [64-

70]. The bcl-2 expression regulates angiogenesis, and its deficiency is associated with decreased 

number of vascular cells and vascular density in the retina [68, 70]. Bcl-2 is important for 

maintaining mitochondrial oxidative homeostasis [71, 72]. In addition, bcl-2 expression is 

significantly decreased during diabetes [73], thus, its absence causes a more oxidized state in tissue 

and, as such, the mitochondria is more oxidized in bcl-2-/- mice as compared with their controls. 

As an anti-apoptotic protein whose expression decreases significantly during diabetes, bcl2 is of 

direct interest for this study.  
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 The Akita mouse, which has a mutation in the insulin 2 gene, is a model for diabetes. Akita 

diabetic mice develop type 1 diabetes as early as 4 weeks of age and show normal survival until 6 

months of age, but then show a dramatic decrease in survival with almost no survivors from 12 

months of age. Enzymatic and non-enzymatic sources contribute to ROS observed in the diabetic 

retinas [74-76], including mitochondrial respiration chain deficiencies. Using our optical imaging 

techniques, we have studied morphological alternations as well as changes in metabolic state and 

oxidative stress in retina from this model by our optical imaging techniques. 

Endoglin heterozygote mice is another model of injury in our study. Endoglin 

(Eng)/CD105 is a type I membrane glycoprotein, which is highly expressed in vascular endothelial 

cells (EC). Loss-of-function mutations in the human endoglin gene cause a dominant vascular 

dysplasia known as Hereditary Hemorrhagic Telangiectasia, HHT-1. HHT disease-causing genes 

encode proteins that modulate transforming growth factor (TGF)-β superfamily signaling in 

vascular endothelial cells. It has been shown that heterozygous mutations in Endoglin (Eng) and 

Activin receptor-like kinase 1 (Alk1) cause HHT-1 and HHT-2, respectively [77-83]. Both of these 

genes are expressed predominantly in endothelial cells [84, 85]. HHT-1 is associated with frequent 

nose bleeds, telangiectases, mucosa, and arteriovenous malformations in lung, liver, and brain [77, 

86]. Ocular involvement has been reported in patients with hereditary hemorrhagic telangiectasia. 

Intraocular vascular lesions, including retinal telangiectasia, arteriovenous malformation in the 

retina, and abnormal choroidal vascular changes were reported [87-91]. Sudden visual loss has 

been described because of ocular involvement [91], bleeding from kidney and urinary vascular 

malformations are other complications reported in HHT patients [92, 93]. Here, the Eng-related 

hereditary haemorrhagic telangiectasia, HHT-1, is investigated. 
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Oxygen-induced ischemic retinopathy (OIR) in a mouse is a highly reproducible model 

of angiogenesis in vivo, and recapitulates the human retinopathy of prematurity condition [94]. In 

this model, postnatal day 7 (P7) mice are exposed to 75% oxygen for 5 days. During this time, the 

developing retinal vasculature is highly sensitive to high levels of oxygen. The high oxygen 

impedes further growth of blood vessels and causes obliteration of the existing vessels. At 

postnatal day 12, the mice are returned to room air (20% oxygen) for 5 days. During this stage, the 

lack of sufficient blood vessels causes the retina to become ischemic [94], up-regulating VEGF 

(Vascular Endothelial Growth Factor) expression and inducing angiogenesis. Unfortunately, these 

vessels are fragile and leaky, sprout into the vitreous, and hemorrhage, causing further damage to 

the retina. We have recently shown that endoglin haplo-insufficiency results in attenuation of 

retinal neovascularization during OIR [95]. Reactive oxygen species (ROS) play an important role 

during angiogenesis, and their aberrant production is linked to retinopathy [1, 56, 57]. In fact, 

antioxidants inhibit microvascular degeneration in models of diabetes and OIR [57, 96, 97]. The 

cellular mechanisms, which modulate intracellular oxidative state, however, are not fully 

characterized [98]. We recently showed that Eng+/- retinal EC are more resistant to oxidative 

challenge compared to Eng+/+ cells [95]. However, how these changes in vascular EC oxidative 

state translate to the organ specific alterations and the underlying mechanisms, need further 

investigation. 

Heterozygous P23H-1 transgenic rat is an animal model for an injury called retinitis 

pigmentosa (RP). RP is a large, genetically heterogeneous group of inherited retinal degenerations 

characterized by progressive and neurodegenerative photoreceptor apoptosis [99, 100]. Oxidative 

stress (OS) and mitochondrial dysfunction contribute to photoreceptor cell loss in retinal 

degenerative disorders. Irreversible loss of rod photoreceptors is the outcome of abnormal 
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physiology associated with mutated or absent gene products and leads to blindness in many retinal 

degenerative disorders, including retinitis pigmentosa (RP) [101]. Considerable evidence supports 

a key role for mitochondrial dysfunction and oxidative damage in the pathogenesis of progressive 

photoreceptor cell death by apoptosis in RP both in vitro [102, 103] and in vivo [103-105]. We 

investigated the metabolic state of the retina in a rodent model of retinitis pigmentosa (RP) using 

a fluorescence cryoimaging technique.  

There is an increasing evidence that reactive oxygen species (ROS) participate in diverse 

lung injuries [106-111]. Persistent pulmonary hypertension of newborn (PPHN), which is 

associated with impaired pulmonary vasodilation at birth, is also affected by oxidative stress [112-

114]. However, the regulation of mitochondrial superoxide during birth transition which lead to 

impaired angiogenesis is unclear [114-122] and subject of our study. In our injury model, PPHN 

is induced by fetal ductal constriction performed at 128 ± 2 days of gestation (term=144 days) 

[119]. After 8 days of ductal constriction, fetal lungs of lamb were harvested for the isolation of 

pulmonary artery endothelial cell (PAEC). We investigated if PPHN induces elevated ROS levels 

in endothelial cells. In the next step, it is intended to model the in situ cell injuries namely 

hyperoxia (exposure to elevated oxygen) and hypoxia (exposure to reduced oxygen level).  

Hyperoxia, is a common and necessary therapy for adult and pediatric patients with acute 

respiratory distress syndrome (ARDS) to restore blood oxygen tension (PO2) to a level that sustains 

vital organ metabolic requirements [123, 124]. However, sustained exposure to high oxygen 

concentrations (> 50%) causes lung oxygen toxicity injury. This injury, which is the result of 

enhanced production of ROS, i.e. oxidative stress, may further impair lung function and contribute 

to the very dysfunction that it is intended to alleviate [125, 126].  
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Monitoring the behavior of PAECs under long hypoxic conditions followed by normal 

condition and then hyperoxic treatment is advantageous, since it is a hypoxia injury model 

happening to the fetus at birth transition following initiation of respiration and then hyperoxic 

treatment. Furthermore, Hypoxic condition followed by normal oxygen condition is a model of 

Ischemia-reperfusion (IR) injury. IR is commonly encountered clinically in conditions such as 

lung transplantation, necrotizing pneumonias, or crush injury to the chest [127].  Approximately 

1,500 lung transplants are successfully performed each year in the US [128] with many times that 

number lost due to prohibitive ischemic times.  

Pulmonary alveolar edema is another lung injury associated with oxidative stress [129-

137]. In this injury normally 'tight' alveolar epithelial intercellular junctions suddenly become 

freely permeable to proteins. Edema can be caused by a variety of factors, including conditions 

that affect osmotic pressure, such as hypotonic fluid overload, which allows the movement of 

water into the intracellular space, or hypoproteinemia, which decreases the concentration of 

plasma proteins and permits the passage of fluid out of the blood vessels into the tissue spaces. 

Conditions that increase capillary permeability, such as inflammation; and conditions that cause 

increased capillary pressure, such as pulmonary artery hypertension which is considered as an 

essential pathophysiologic factor [138, 139].  

In all these ROS-mediated injuries, we have studied the effects and consequences of the 

damage on the electron transport chain. We monitored either the metabolic activities or structural 

alternations in these clinically important disorders and injuries using optical imaging tools with 

the future goal of translation to clinical avenues. 
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2 Optical cryoimaging of oxidative stress in eye diseases 

Two auto-fluorescent coenzymes in the mitochondria, NADH and FAD, are imaged to 

measure the cellular redox state of organs. Cellular redox state is a quantitative marker to examine 

oxidative state of the tissue and estimate the amount of mitochondrial damage due to injury. 

Monitoring of NADH and FAD fluorescence are widely performed using optical fluorescence 

techniques to probe tissue redox state and energy homeostasis in organs such as the heart [1, 25], 

brain [27], kidney [1, 28, 29], liver [140], skeletal muscle [141], cervix [142], and colon [47]. 

However, using this method to measure redox state of the eye has not been previously reported. In 

this study, optical cryoimaging technique with high sensitivity and specificity for discriminating 

between diseased and non-diseased tissue is employed to measure ocular and retinal metabolic 

state. 

Our cryoimaging system measures the metabolic state of organs by capturing higher 

fluorescence quantum yield of fluorophores as compared to room-temperature imaging techniques 

[38, 143, 144]. Stronger quantum yield leads to stronger fluorescence signal and higher signal to 

noise ratio. This property helps to detect metabolic changes in the early stage of the injury. 

Cryoimager also provides the snapshot of metabolism at the freezing time of the tissue and 

preserves the metabolic state of the organ. Furthermore, this system is able to acquire fluorescent 

images of fluorophores with different wavelengths including NADH, FAD, as well as bright field. 

Analyzing the captured images, one can demonstrate 3D spatial distribution of NADH, FAD, and 

redox fluorescence intensities in tissue. The 3D volumetric demonstration of the redox ratio is 

helpful to study the effect of the injury on both oxidation state and specific structure of the organs 

spatially.  
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In this chapter, a detailed description is given regarding the use of the cryoimager in eyes 

affected by different retinopathic injuries of clinically important disorders such as diabetic 

retinopathy, retinitis pigmentosa, Hereditary Hemorrhagic Telangiectasia (HHT-1) and Oxygen 

Ischemic Retinopathy (OIR). Mitochondrial redox state is measured in the eyes as a biomarker of 

oxidative stress level for diagnostic purposes. Moreover, the temporal and spatial distribution of 

oxidative stress in injured eye with different duration of disease is investigated. Furthermore, the 

metabolism of the retinal layer is also targeted which requires high resolution imaging of the eye. 

It should be noted that imaging is performed in cryogenic temperatures to achieve the strongest 

fluorescence signals. Due to strong fluorescence signals, cryo redox imaging serves as a diagnostic 

tool for ex vivo and in vivo studies of the organ metabolism. The results of this chapter provide a 

basis to apply optical fluorescent techniques to quantify the effects of different injuries on eye 

mitochondrial RR ex vivo and eventually in vivo. 

2.1 Tissue Preparation 

All animal experiments were conducted in accordance with the Association for Research 

in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision 

Research and were approved by the Institutional Animal Care Committee of the University of 

Wisconsin School of Medicine and Public Health. 

Eyes from mice, as well as neonatal rats were used in the cryogenic studies of eye 

bioenergetics. A brief description of our eye tissue preparation protocols follows. 
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2.1.1 Akita/+, diabetic retinopathy, mice eyes 

Akita/+ male mice were maintained and screened as previously described [145], at the 

University of Wisconsin-Madison. Briefly, Ins2Akita heterozygous (Akita/+) male mice were 

obtained from Jackson Laboratories. The colony was maintained by breeding C57BL/6J inbred 

females with Ins2Akita heterozygous males. Control animals were C57BL/6J male littermates. In 

all diabetic mice, diabetes was left untreated. Genomic DNA was prepared from tail biopsies and 

the transgenic Akita/+ mice were identified by PCR screening utilizing the following primers: 5′-

TGCTGATGCC CTGGCCTGCT-3′ and 5′-TGGTCCCACATATGC ACATG-3′. The amplified 

fragments were digested with FNU 4 HI as recommended by Jackson Laboratories. The eyes were 

harvested from male Akita/+ mice with different duration of diabetes, 3 week (3W) and 6 month 

(6M). The Akita/+ mice develop diabetes by 4 weeks of age.  

2.1.2 Retinitis pigmentosa, rat eyes 

Albino SD normal and heterozygous P23H-1 transgenic rats, the offspring of P23H-1 

homozygotes (Retinal Degeneration Rat Model Resource, UCSF) and SD normal albino rats 

(Harlan Laboratories, Madison) were fed ad libitum and maintained in a temperature and humidity-

controlled environment under dim cyclic light, 12-h light/12-h dark cycle, with an average 

illuminance of 5 to 10 lux inside the cage. Once animals reached postnatal day 30 (P30), they were 

divided into two groups. The heterozygous P23H-1 rats were the model of retinal degeneration 

and SD normal albino rats were used as non-dystrophic controls. SD normal and P23H-1 

transgenic rats were euthanized at P30.  
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2.1.3 Endoglin transgenic mice eyes, HHT-1 

Endoglin heterozygous (Eng +/-) mice were provided by Dr. Dean Lee (University of Utah, 

St Lake City, UT) and the mice were screened as previously described [146]. The Eng +/- mice 

were identified by PCR analysis of DNA isolated from tail biopsies. The PCR primer sequences 

were as follow: Endoglin-forward: 5’-CACAGCTGTA ATCT CAGCACTTG-3’, and Endoglin-

reverse: 5’-GATTGGATCCATTGTGGTAGCTG-3’.   

For the cryoimaging studies, eyes were then extracted from a total of 3 groups of mice in 

different ages, Eng+/- and Eng+/+ mice in 21 postnatal day (P21), 6 week (6W), and 10 month 

(10M). 

2.1.4 Oxygen induced ischemic retinopathy, OIR, mice eyes  

To prepare the oxygen-induced ischemic retinopathy eyes, the 7-day-old (P7) pups and 

mothers were placed in an airtight incubator and exposed to an atmosphere of 75 ± 0.5% oxygen 

for 5 days. Incubator temperature was maintained at 23 ± 2 °C, and oxygen was continuously 

monitored with a PROOX model 110 oxygen controller (Reming Bioinstruments Co., Redfield, 

NY). Mice were then brought to room air for 5 days [147]. After sacrificing a total of 2 groups of 

mice Eng+/- OIR and Eng+/+ OIR in 17 postnatal day (P17), eyes were extracted for the cryogenic 

studies. 

2.1.5 Freezing Protocol and Embedding 

Before fluorescence imaging, the extracted tissue was frozen and embedded as previously 

described [148]. A brief description of each step of this process follows. 

Freezing: To preserve the metabolic state of the eye, fresh eye tissue was quickly frozen 

after harvesting in a chilled isopentane (methylbutane, Fisher Scientific, IL). The tissue was 

immersed in isopentane for one minute and then in liquid nitrogen (LN2, -196oC) for hours 
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followed by long-term storage at ultralow freezer (-80oC). For fluorescence cryo-imaging, the 

frozen tissue was embedded in a customized black mounting medium and placed on a chilled 

aluminum plate to keep the tissue in place for freezing and slicing. This black mounting medium 

is not fluorescent in the NADH and FAD emission wavelengths and provides a good contrast 

between the fluorescent signals emitted from tissue and the background.  

Mounting medium: The mounting medium was prepared in the Biophotonics Lab 

(UWM), using Polyvinyl Alcohol (PVA, Grade 71-30, PVOH7130, Chemical Store Inc., Clifton, 

NJ), distilled water and Indian ink. To make one liter of the embedding medium, 80g of PVA was 

added to 920g of boiling distilled water and stirred until the PVA completely dissolves. The liquid 

is heated to 300 oF for 1.5 hours. The solution should be stirred while boiling until the liquid 

becomes transparent and dense. Prior to adding Indian ink, the temperature of the solution should 

be turned down (250oF) to stop boiling. Enough amount of ink should be added and mixed 

thoroughly to make the entire solution black. Heating at (250oF) will continue for 30 minutes, and 

then the solution was allowed to cool down to room temperature. The mixture was stored in the 

refrigerator until needed. One day before use, the mixture was placed on the rotary motor rock 

tumbler to mix and warm up to room temperature. 

Embedding: The embedding process began with freezing the base medium, embedding 

the eye horizontally and then fixing its position by adding more black medium around the tissue. 

Horizontal embedding of the eye is advantageous since the axis of the camera in front of the 

embedded eye will be perpendicular to the optical axis of the eye, and hence each z-slice includes 

a cross section of all different structures of the eye. After embedding, the tissue was stored in an 

ultralow freezer (-80oC) for at most 24h prior to imaging. Before starting the experiment, the 

sample stand was installed on the sample carriage in the cryoimager such that the surface of the 
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black medium was parallel to the cryoimager microtome. Each injury group of eyes was imaged 

along with its corresponding control group within two days.  

2.2 Imaging and Image Processing 

2.2.1 Optical cryoimaging system 

The custom-made cryoimager, described and used in this chapter (figure 2-1), sequentially 

slices the frozen tissue and acquire fluorescent images in up to five channels from each slice [149]. 

It was first developed and used in studying organ blood flow in small laboratory animals using 

microspheres [150]. The instrument determines regional blood flow by using the locations of 

fluorescent microspheres deposited in perfused rat hearts. The cryoimager excites and captures the 

images of the emission from the endogenous coenzymes, NADH and FAD. Each pixel of the 

captured images shows the intensity level of the fluorescent signal emitted from corresponding 

point of the biological sample. This information is translated to the concentration of the NADH 

and FAD coenzymes showing the metabolic states of the tissue under study. 

Rapid freezing of organs in liquid nitrogen temperatures preserves the tissue’s metabolic 

state [149] and provides the snapshot of metabolism at the time of freezing. Low temperature 

fluorescence imaging (cryoimaging) is advantageous since it provides stronger fluorescence 

quantum yield of NADH and FAD fluorophores as compared to room temperature [50, 144, 150] 

and so a higher signal to noise ratio. Cryogenic studies provide the strongest signals and the highest 

signal to noise ratio. Moreover, cryoimager provides 3D spatial distribution of tissue NADH and 

FAD fluorescence intensities [38, 143, 144]. 3D spatial distribution of NADH and FAD 

concentration in tissue indicates the metabolism of the tissue and show which part of the tissue is 

mostly affected by different injuries.  
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The cryoimager consists of a cryo freezer, a cryo-microtome embedded inside the cryo 

freezer, and the optical parts and a workstation (Dell Computer) placed outside the cryo freezer. 

The optical components of the cryoimager are as follows: Rolera CCD camera (Rolera (QImaging, 

em-C2 Rolera, 8μm pixel), a cold mirror, a reflecting mirror, a mercury arc lamp (200W, Oriel), 

an excitation (EX) filter wheel (provides up to five excitation wavelengths), and an emission (EM) 

filter wheel with synchronized rotation to EX wheel. Fluorescence images are captured using the 

digital camera (1004×1002-pixel array) with an either 200-mm Nikkor lens (Nikon, Tokyo, Japan) 

or Optem Zoom lens system (125C 12.5:1 Micro-Inspection, Qioptiq). Two motorized filter 

wheels (excitation and emission filters) are mounted in front of the light source and camera, 

respectively. The motor-driven microtome sequentially slices frozen tissue at the desired slice 

thickness while filtered light from the lamp excites fluorophores in the exposed surface of the 

 

Figure 2-1: Schematic of cryoimager. This device sequentially slices the tissue and captures images of 

the tissue surface after each slicing in as many as 5 channels. The images are then displayed and saved 

to a computer for further processing and 3D renderings of the tissue.  
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tissue. The microtome is housed in the cryo freezer, which maintains the sample at -40oC during 

sample slicing and image acquisition. A LabVIEW (8.6 National Instruments) [151] program 

controls the microtome motor and two filter wheels as well as image capturing, display, and 

acquisition. 

The excitation band pass filter used for NADH is 350nm (80nm bandwidth, UV Pass 

Blacklite, HD Dichroic, Los Angeles, CA) and for FAD is 437nm (20nm bandwidth, 440QV21, 

Omega Optical, Brattleboro, VT). The emission filter for NADH is 460nm (50nm bandwidth, 

D460/50M, Chroma, Bellows Falls, VT) and for FAD is 537nm (50nm bandwidth, QMAX EM 

510-560, Omega Optical, Brattleboro, VT). At each slice, the camera captures fluorescence images 

of the tissue with a pixel size of 8µm. Lateral resolution of the cryoimager can be adjusted to 4-12 

microns depending on the lens used in the setup. The axial resolution of the system is defined by 

the slice thickness and can be as small as 10μm. For this study, a resolution of 10μm was used in 

the z-direction, which resulted in around 250 z-slices per mice eye. Images are acquired with 

exposure times of 5-6 seconds for FAD and 2-3 seconds for NADH. Considering the time needed 

for rotating the filter wheels, as well as moving and slicing the sample, the whole imaging of a 

mouse eye takes 2.5 hours.  

2.2.2 Version two of the cryoimager for eye imaging 

In order to improve the performance of the system for the eye imaging and achieve high 

quality eye image, the following changes were made (figure 2-2). 1) Using Optem zoom lens with 

high magnification and low aberration instead of the canon lens. Optem Zoom lens system is 

capable of magnifying the image up to 6.5X without any auxiliary lens. With an auxiliary lens of 

2X, it would magnify up to 13.0X without changing the main tube of the lens [13]. Choosing zoom 

lens is advantageous in another aspect as well. Zoom lens has an achromatic lens system with a 
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very small focal shift. The lens mechanism has a long tube, meaning the focal length is increased 

to reduce the focal shift, which results in less chromatic aberration. 2) Using small emission filter 

wheel containing filters with 1-inch diameter: Optem zoom lens has a large focal length with a 

slim body in respect to the Canon lens. Therefore, a small filter wheel is used in between the 

camera and the lens. 3) Changing the position of the filter wheel: in the traditional setup of the 

system, Canon lens was placed between filter wheel and camera. In the new setup, placing the 

filter wheel in between the lens and the camera gives us the freedom to move the lens closer to the 

sample, and collect more light before it dissipates. 

 

 

Figure 2-2: Version two of the cryoimager. 
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Before starting the experiment and imaging the eye samples, a piece of standard grid paper 

was placed on the surface of the embedded tissue to find the focal plane of the lens to capture in-

focus images and determine the resolution of the system. The number of pixels within a known 

distance on both the x- and y-axis (of the grid image) was counted to get the number of microns 

per pixel in the horizontal and vertical directions to find the lateral resolution of the system. 

Knowing the magnification of the zoom lens and the pixel size of the camera, one can estimate the 

resolution of the imaging system (Image pixel size = camera pixel size / lens magnification). 

However, coherency of the light source and aberration caused by other optical elements in the light 

path affect the resolution as well. Therefore, standard grid paper in our imaging system gives a 

better estimate of the lateral resolution. For the eye imaging, replacing the Canon lens by the zoom 

lens improved the resolution of the cryoimager by a factor of 3. 

A calibration method was also designed to partially correct for day-to-day variation of light 

intensity, and non-uniformity of the illumination pattern. A uniform fluorescent flat acrylic plate, 

which is highly resistant to photobleaching, was placed on top of the tissue block and imaged in 

all channels to acquire the illumination pattern. Changes in the fluorescence intensity of the 

standard plates in both the NADH and FAD channels accounts for day-to-day light intensity 

changes in both channels. The dark current image was also captured with the lamp shutter closed 

and the camera lens covered. This image is used for background subtraction. Acquisition of the 

tissue sections then followed calibration.  

When the tissue has been completely imaged, each individual slice first has the dark image 

subtracted from it. The resulting image is then corrected for the non-uniformity of the illumination 

pattern by dividing by the image of the flat field plate captured in the same channel. Since the 

exposure time for flat field plates is not the same as exposure time for the tissue, this method can 
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only partially correct for the light variation over time. Therefore, great care was taken when 

imaging to ensure that all imaging parameters were constant between images. Furthermore, the 

injury samples with corresponding controls were embedded all together at the same day and 

imaged at the same day, as well. 

Although the mercury arc lamp provides intense broadband light, it suffers from non-

homogeneity of the illumination pattern. In order to couple the generated light to the cold mirror 

and excitation filter wheel, a condenser was used which deteriorates the homogeneity of the 

illumination pattern. To improve the homogeneity, the condensing factor was decreased by 

adjusting the knobs of the condenser. Using neutral density (ND) filters in the excitation path also 

improves the homogeneity of the light, but also reduces the intensity of the excitation light. To 

compensate for a lower intensity level, longer exposure times were set for the imaging. 

The modified cryoimager make it possible to distinguish the different structures of a small 

organ like mice eye including retinal layer, sclera, choroid, vitreous, lens, and anterior chamber 

from both NADH and FAD images (Figure 2-3). However, discriminating the sub-structure and 

different layers of retina is not possible by cryoimager unless we use staining and there is no 

method currently available for tag-free structure (molecular and cellular level) imaging. 
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2.2.3 Image Processing 

Figure 2-4 demonstrates the steps of the image processing program for the calculation of 

the redox value, and 3D representation of the redox. After image acquisition, FAD and NADH 

autofluorescence images from each eye (containing 250 slices) were processed offline using 

MATLAB (r2015a, The MathWorks, Inc., Natick, MA). The preprocessing step includes 

background subtraction, and shadow correction. 

 

Figure 2-3: Top: anatomy of a rat or mouse eye (lateral view). Bottom: A 2D cross section image of mice eye in 

Left- NADH fluorescent channel, and right- FAD fluorescent channel. Retinal layer was highlighted with the red 

dash lines in both images. 
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The composite images were then created using all the image slices for each eye, for both 

NADH and FAD signals. The ratio of NADH and FAD (RR) [152, 153], was calculated voxel by 

voxel, according to equation (2-1). 

   Redox Ratio = RR = NADH / FAD     (2-1) 

The 3D representation of Redox for each eye was then calculated using z-stacks of images 

in FAD and NADH channels. In this method, NADH fluorescence images are divided by the 

corresponding FAD images, pixel by pixel, to calculate the NADH redox ratio for each slice of the 

tissue sample. These slides are used to construct the redox stack. The 3-D volume redox of the 

organ was constructed and the corresponding histograms were plotted.  

 

Figure 2-4: A schematic illustration of the image processing steps to obtain the 3D representation and histogram 

of the eye redox from the input fluorescent images. 
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The histograms of Redox in each group, diseased and normal were created, and the mean 

(first moment) of these histograms were calculated for quantitative comparison between normal 

and diseased groups. A histogram of the whole volume of each eye is plotted and the mean was 

calculated according to equation (2-2).  


  


x yN

i

N

j

Nz

kzyx

kjiVolumeeye
NNN

Mean
1 1 1

),,(_
1

   (2-2)  

Where Nx, Ny and Nz are the number of voxels in x, y and z directions, respectively. The voxel 

size in x, y and z direction is 10μm. Due to background subtraction, black mounting medium 

(background) was excluded in the calculation of the histogram mean value.    

The retina is the target layer to investigate the effect of retinopathy on tissue metabolism. 

Due to high metabolic activity of retinal layer in the eye, which is reflected by the large number 

of mitochondria in photoreceptor cells [154], retina has the main contribution in the metabolism 

and RR signal. Therefore, the sphere-like retinal shell (figure 2-5) was segmented using the method 

described by Penna et al. [155]. 

For the segmentation, the approximate thickness of the retinal layer (table 2-1) and the 

homogenous intensity distribution of the retinal layer were also used. As shown in figure 2-3 

Retinal intensity changes between the vitreous and lens intensity levels in both NADH and FAD 

channels. Therefore, the intensity-based band pass filter is useful to further segment and smooth 

the segmented retinal shell. It worthwhile to note that the lens of the eye functions as a UV filter 

(300-400nm) to protect retina from UV-induced photo-damage [156, 157]. Therefore, lens absorbs 

most of the photons that would excite the NADH (whose peak excitation is 365nm), and are 

transmitted through the cornea and aqueous humor [158]. Therefore, it shows the highest intensity 

level in the fluorescence images among all the structures in the eye.  
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Table 2-1: The thickness of different layers in the back of the mouse eye, as well as the number of the cryoimager 

slides to expect the corresponding layer. 

 

 Retinal layer [159] Choroidal layer Sclera layer [160] 

Thickness (micron) 140-220 70-80 9-20 

# of 10-micron slides 14-22 7-8 1-2 

 

 

 

Figure 2-5: Images of FAD, NADH, and RR (FAD Redox; NADH / FAD) for one representative eye (10 months, 

Eng+/-). The top panel is the result of volume rendering of half of the eye (back of the eye which includes retinal 

layer) with the lens and the bottom panel is the volume rendering of the retinal shell with the connected optic nerve 

[1]. 

 

In addition to whole volume method explained above, there is another presentation method 

called maximum projection method. This method calculates the maximum intensities along the z 

axis of the composite images (3-D volume in NADH, FAD, and redox ratio). Maximum projection 

method is advantageous since it emphasizes the differences in the components. This method can 

reveal details, which are hidden in the whole volume method. The other advantage of this method 
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is less computationally intensive compared to whole volume method. The advantage of the whole 

volume method is that every single voxel of the images is used in redox calculations. This is 

beneficial in homogeneous tissue like retina and not the whole eye. Therefore, to compare the 

redox of the whole eye, which is a structured organ the maximum projection method was 

employed. However, for the redox quantification of the retinal layer the whole volume method 

was preferred.   

For statistical analysis, the mean values of redox ratio (calculated from the redox 

histogram) was carried out for each group of diseased and normal eyes using a two-tailed Student's 

t-test with P < 0.05 as the criterion for statistical significance. 

2.3 Results 

Mice eyes suffering from diabetes with different durations of disease, 3 weeks and 6 

months, are compared and the result is presented in figure 2-6. The top panel of the figure 

represents the max projection results of the NADH, FAD, and redox ratio (RR) images and the 

bottom panel demonstrates the histogram of these max projected images. For each histogram, the 

mean value was calculated as described in the image processing section. In this panel, the counts 

of each bin have been normalized to the total number of pixels in the eye. As a result of this 

normalization, the value of each bin corresponds to the percent of voxels in the eye with intensities 

falling within the given range. Therefore, the histogram can be considered as a scaled probability 

density function of mitochondrial redox ratio intensities for an eye. The mean values of these 

histograms for Akita/+ mice demonstrated decreased RR (increased oxidative stress, OS) in eyes 

from 3-week-old male Akita/+ mice (control, non-diabetic) to 6-month-old (the earliest time that 
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significant retinopathy is observed in Akita/+ mice retinal vasculature). A comparison between 

RRs of these diabetic eyes showed a 30% decrease with progression of disease from 3-weeks to 

6-months of diabetes indicating increased OS. It should also be noted that 3 weeks’ samples are 

non-diabetic, since male Akita/+ mice develop diabetes by 4 weeks of age. 

Figure 2-7 displays, maximum projection images of NADH, FAD, and NADH RR for a 

representative eye in P23H transgenic and Sprauge Dawley (SD) normal rats. The images show a 

significant decrease in the mean NADH RR of eyes from diseased versus SD normal eye. The eyes 

in the SD normal group (first column in figure 2-7) show a lower concentration of FAD and a 

higher concentration of NADH compared to diseased group (second column in figure 2-7). Thus, 

the NADH RR is higher (more reduced) in eyes from SD normal rat eye compared to the eyes 

 

Figure 2-6: Increased oxidative stress in diabetic eyes from 3 weeks (non-diabetic) and 6 months 

(diabetic) old Akita/+ mice. Top: The maximum projected fluorescence images of NADH, FAD, and 

RR of eyes from 3-week (top row) and 6- month (bottom row) old mice. Bottom: Histograms of RR 

in eyes of 3-week-old and 6-month-old male Akita/+ mice. Note a decrease in the mean RR in eyes 

of diabetic mice due to diabetes progression and increased oxidative stress.  
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from transgenic rats (more oxidized) due to oxidative stress. P23H transgenic rats consistently 

demonstrated increased OS as shown in figure 2-7 by a decreased NADH RR.  

Top panel of the figure 2-8 shows the RR histograms of a representative eye in each of the 

SD normal and diseased groups. In the diseased group, the RR indicates a more oxidized 

biochemical state with a mean value of 0.821 compared with a higher mean value of 1.079 in SD 

normal eyes. There is a shift in histograms from the redox of the normal eye to more oxidized state 

of the P23H transgenic eye and the RR histogram shows a 24% oxidation in the respiratory chain 

in this group due to increased OS. The bottom panel of the figure 2-8 compares the mean values 

of the histograms (mean ± SEM, standard error over the number of samples) of max projected 

 

Figure 2-7: Representative max projected NADH, FAD and RR images for eyes from normal and 

transgenic groups [148]. 
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images from SD normal and diseased groups. The results show a significant difference (p <0.001) 

between P23H transgenic eyes versus the SD normal eyes (n=4 in each group) [148].  

The effect of the endoglin gene deletion, age and OIR was studied on the eye metabolism. 

Mitochondrial redox state (FAD RR = FAD/NADH) was determined in eyes from Eng +/- mice 

and control littermates at postnatal day 21, 6 weeks, and 10 months of age, as well as eyes from 

 

 

 

Figure 2-8 [148]: Top: representative histogram for eyes from normal and diseased groups comparing redox ratio 

intensity between P23H transgenic retina vs. SD Normal retina. Oxidative stress causes more oxidation in the 

NADH redox histogram. Bottom: bar graph plot comparing the mean values of the histograms of max projected 

images from SD and P23H transgenic rat eyes. The results show a significant difference between normal and 

diseased eyes (***P <.001). Error bars: SEM; P values were obtained from unpaired Student’s t- test. 
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Eng +/- OIR mice and control littermates at postnatal day 17. FAD RR detects changes in the 

oxidation state of the mitochondrial respiratory chain and can be used as a quantitative marker to 

evaluate the oxidative stress in diseased and normal eye.  

Figure 2-9 shows 3D volume rendering of FAD, NADH, and FAD RR, as well as the FAD 

RR histogram from a representative retina in each group of (P21, 6W, 10M) Eng+/- mice in 

comparison with corresponding controls. As described in the image processing section, retinas of 

mice were segmented from the fluorescent images of eyes captured by cryoimager. As Figure 2-9 

shows, retinas from Eng +/- mice exhibit a significant decrease in the mean FAD RR in all three 

age groups compared to Eng +/+ mice. To better compare the intensity of the FAD RR 3-D 

rendered images in Eng +/+ and Eng +/- groups, the histograms of FAD RR for each set of retinas 

were plotted. These histograms display the result in which, in the Eng +/- group, the FAD RR 

indicates a more oxidized biochemical state compared to Eng +/+. The results presented in the 

histogram indicate that the mean FAD RR of retina from 6 week-old Eng +/- mice showed a more 

significant decrease compared with control mice (Eng +/+). There is a blue shift in histograms 

from Eng +/- versus the Eng +/+ retina. The histogram shows 23%, 33%, and 30% change in P21, 

6W, and 10M retinas, respectively.  

We also compared the FAD RR in the retina during OIR in Eng+/- and Eng+/+ mice. 

Figures 2-10 displays the 3-D rendering of FAD and NADH fluorescence signals, and FAD RR as 

well as the FAD RR histogram from a representative retina of each of the Eng+/- and Eng+/+ mice 

during OIR. The images show a remarkable decrease in FAD signal and therefore a substantial 

decrease in the FAD RR of both organ, retina from P17 Eng +/- OIR compared to Eng +/+ OIR. 
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The presented histograms demonstrate 29%, and 41% change in the mean FAD RR and also 58% 

and 37% change in the deviation of FAD RR in P17 retina of Eng+/- mice compared to Eng+/+ 

mice during OIR.  

 

 

 

 
 

Figure 2-9: Representative 3-D reconstructions of an eye from each of the three groups (P21, 6W, 10M) and their 

related histograms. From left to right, images shown are FAD, NADH, and FAD redox ratio (FAD RR). The 

histogram shows 23%, 33%, and 30% change in the mean FAD RR in P21, 6W, and 10M eyes [1]. 
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Figure 2-10: Representative 3-D reconstructions of eyes from P17 Eng+/+ mice (first panel) and P17 Eng+/- 

mice (second panel) during OIR and related histogram (bottom panel). From left to right, images shown are FAD, 

NADH, and FAD redox ratio (FAD RR). The histogram shows 41% and 37% change in the mean and deviation 

of FAD RR [1]. 

 

 
 

Figure 2-11: Bar graph plot comparing the mean values of the histograms of 3D rendered images from Eng +/- 

eyes and their respective controls in three different ages and also from Eng+/- and Eng+/+ eyes at the age of P17 

during OIR. The results show a significant difference between retinas from P17, P21, 6W and 10M old Eng +/- 

and Eng +/+ mice (*p <0.05). The most significant change was demonstrated by 6 weeks old Eng +/- compared 

to Eng +/+ mice and by 17 days old Eng+/- compared to Eng+/+ mice during OIR (****p <0.0001) [1]. P values 

were obtained from a two-tailed student's t-test. 
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To evaluate the statistical significance of the results, four eyes in the P21 groups (Eng +/+ 

and Eng +/-), ten eyes in the 6W groups and two eyes in the 10M groups were imaged. Also three 

animals and six eyes from Eng +/+ and Eng +/- mice were studied during OIR. The mean values 

of the histograms of 3-D rendered images were compared, the results of which are represented in 

Figures 2-11. This figure displays a significant difference in RR of retinas from Eng +/- mice 

versus their appropriate control, Eng +/+ mice, in three different ages as well as Eng +/-  versus 

Eng +/+ mice during OIR at the age of P17 [1]. 

2.4 Discussion and conclusion 

Oxidative stress and mitochondrial dysfunction can lead to apoptotic cell death early in the 

pathology of many diseases [161-168] in different organs. Thus, the measurement of mitochondrial 

metabolic activity could potentially be an early indicator of organ dysfunction during the disease. 

Our present method measures fluorescence from both NADH and FAD, allowing calculations of 

the redox ratio, which has proven to be a powerful diagnostic marker independent of the number 

of mitochondria [1, 28, 29, 148]. Furthermore, this study demonstrates the ability of cryoimaging 

to measure RR in a small organ like the eye and even in a thin layer of eye, retina.  

Fluorescence redox imaging was performed using the cryoimager to determine the changes 

in ocular oxidative stress and use data to predict progression of different ROS-mediated diseases 

including, diabetic retinopathy (DR), retinitis pigmentosa (RP), HHT-1, and OIR. To measure the 

changes in the oxidative stress, mitochondrial redox state was analyzed in mouse eyes suffering 

from these diseases. The percentage change in the signals was expected to correlate with the 

severity of injuries in the tissue (injured vs. normal). 
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Diabetes regulates of apoptosis and vascular function in the retina and pathogenesis of 

diabetic retinopathy and can eventually lead to blindness. Diabetic retinopathy affects up to 80 

percent of all patients who have had diabetes for 15 years or more. Despite these intimidating 

statistics, much of the damage could be reduced if there was early detection and proper treatment. 

We demonstrated that oxidative stress and mitochondrial redox state can be considered as the 

earliest physiological marker of diabetic retinopathy. The experimental results of our studies 

suggest that diabetic eyes exhibited higher OS, therefore lower redox ratio with progression of the 

disease. Akita/+ diabetic mice showed a 30% decrease in RR with progression of disease from 3-

weeks to 6-months of diabetes indicating increased OS. Diabetic male Akita/+ mice, 

spontaneously develops type 1 diabetes, and exhibit many signs of early non-proliferative 

retinopathies seen in humans with diabetes.  

In the presence of DR, the coenzymes NADH and FADH2 accumulate in their oxidized 

forms (NAD and FAD). We therefore anticipated higher concentrations of FAD and lower 

concentrations of NADH in the injured retina compared to P21 retina which can be considered as 

a disease free retina. It can be seen from the maximum projection images that the FAD 

concentration is higher and NADH concentration is lower. This results in the NADH RR showing 

a significant decrease in the diabetic eye as compared to the control. The difference in the mean 

values of the two histograms is the result of a shift in the metabolic state. OS caused by diabetes 

is the reason for this shift in metabolic levels of the eye tissue and causes the mitochondrial 

respiratory chain to be more oxidized. The 30% oxidation in the RR that we observed in the 

diabetic eye implies that substantial mitochondrial OS is a significant early cellular event in DR.  

In various forms of retinitis pigmentosa (RP), another ocular disease under this study, rod 

specific mutations are genetically heterogeneous trigger photoreceptor cell death by apoptosis. 
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Recent studies suggest that death of cone photoreceptors subsequent to rod cell death are due to 

increased oxidative and nitrosative stress [169, 170]. The retina is particularly vulnerable to 

oxidative damage since it is a tissue with one of the highest rates of oxygen consumption in the 

body and about 90% of tissue oxygen is metabolized within the mitochondria [171]. As reported 

in induced and inherited retinal degeneration models, photoreceptors die due to OS, mitochondrial 

dysfunction and apoptosis [172]. There are several potential sources of ROS generation in 

inherited retinal degenerative diseases that may be either caused or exacerbated by reduced oxygen 

consumption due to the loss or inactivity of mutant rod photoreceptors. Markers of oxidative 

damage to proteins, lipids and DNA have been detected in cone photoreceptors in the transgenic 

pig model of RP that suggesting that as the rod photoreceptors degenerate, there is a reduction in 

oxygen consumption in the outer retina resulting in hyperoxia in the photoreceptor layer with  

subsequent increase in oxidative stress, resulting in cone loss [171, 173]. Understanding the 

biochemical mechanisms involved in cone photoreceptor degeneration is important since cone loss 

is the major reason for visual loss in RP.  The above hypothesis is supported by the fact that 

photoreceptor depletion-induced hyperoxia is a factor that makes the degeneration process 

progressive as seen in models of retinal degeneration. Increasing evidence supports the therapeutic 

efficacy of mitochondrial targeted agents including MITO 4565, TUDCA (tauroursodeoxycholic 

acid), minocycline and cyclosporine A in various models of retinal and neurodegenerative 

disorders [172-175].  

In the presence of hyperoxia, as seen in RP and other inherited retinal degenerations, the 

mitochondrial respiratory chain is more oxidized and we expect higher concentrations of FAD and 

lower concentrations of NADH in the P23H retina compared to SD normal retina. This results in 

a shift in the histogram of the mitochondrial RR toward left. NADH RR shows a significant 
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decrease of 24% in the degenerating eye as compared to the SD normal. The 24% oxidation in the 

NADH RR that we observed in the retina of P23H transgenic rat model suggests that mitochondrial 

RR is an early cellular marker for early detection of retinal OS and so RP. 

We observed an increase in signal intensity in the eye samples from the vitreous in both 

NADH and FAD channels that needs to be further investigated and explained. Changes in the 

biochemical composition of vitreous following pathological changes in the retina during the 

degeneration process may be one of the reasons for those isolated signals. Collagen, elastin, flavins 

and lipo-pigments (ceroid and lipofuscin) are some of the endogenous tissue fluorophores that has 

excitation emission spectral overlap with NADH [176, 177]. However unlike NADH, collagen and 

elastin contribution would not be expected to change with variations in mitochondrial redox state 

[142, 176]. It has also been shown that upon binding to a protein, the quantum yield of NADH 

increases four fold [178]. Proteomic changes in the vitreous humor have been reported in micro 

vascular pathologies including proliferative diabetic retinopathy [179].  

To exclude the signals from other parts of the eyes including vitreous, the retinal shell was 

segmented to study the effect of the diseases on retina health. OS and redox state of retina in the 

models of injuries (HHT-1, in combination with oxygen induced retinopathy (OIR) condition and 

normal air condition) were also investigated using fluorescent imaging in cryogenic temperatures. 

Our studies also suggest that mitochondrial oxidative stress can be also detected in retinal layer of 

mice eyes in the absence of sufficient endoglin expression (animal model for HHT-1). Retinas 

demonstrated a decrease in FAD signal and, as a consequence, a decrease in tissue FAD RR. This 

decrease is due to a deficiency in the endoglin protein (Eng +/-), which makes the tissue more 

resistant to oxidative challenges, yielding a lower RR (33% in eye) compared to their control (Eng 

+/+). However, diminished oxidative response may be responsible for mitigation of angiogenesis 
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in these organ, as we have shown in the eye during OIR [95]. The results from the eye of Eng+/- 

show same direction shift in RR compared to Eng+/+ at all three ages, including 21 days (P21), 6 

weeks, and 10 months. The changes in RR were the lowest at P21 mice, then reached its maximum 

at 6 weeks, but decreased in the 10 month mice. To gain further insight into the physiological role 

endoglin plays during vascular development and neovascularization, we compared the RR as a 

marker of oxidative stress in the eyes of Eng+/- and Eng+/+ mice during OIR. Eng +/- tissue 

exhibited 41% lower RR compared to the Eng +/+, which means it is less oxidized. The noticeable 

change of FAD RR in the eye during OIR is consistent with significant up-regulation of endoglin 

expression in retinal vasculature, and enhanced retinal neovascularization in the Eng +/+ mice. 

These mice showed higher RR than Eng+/- mice which exhibits little or no neovascularization 

during OIR [95]. 

The changes of RR in eyes from Eng+/- in comparison with Eng+/+ presented greater value 

during OIR compared to normal condition. Due to high oxygen-mediated vessel obliterations, the 

percentage of RR changes in P17 mice during OIR is even bigger than 6W old mice during normal 

condition. The histogram of RR in the eyes from Eng +/+ OIR is broader than that of Eng+/- OIR. 

The standard deviation of FAD RR in the eyes of Eng+/+ was 37% higher than that of Eng+/-. 

These results correspond to influence of enhanced ocular and renal neovascularization in the Eng 

+/+ mice during OIR.  

The results show a significant difference in the mean redox ratio of eyes with and without 

endoglin haploinsufficiency in both room air and OIR conditions. As expected, the decrease in the 

FAD redox ratio of the Eng +/- eyes indicated an overall decrease in oxidative stress.  

Our data is more consistent with the notion that some level of reactive oxygen species is 

essential during angiogenesis, and perhaps other cellular activity. A significant decrease in nitric 
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oxide (NO) level, consistent with decreased expression of endothelial nitric oxide synthase (eNOS) 

and inducible NOS (iNOS) in Eng +/- EC, was observed in our previous study [95]. Our study 

here shows reduced oxidative stress in Eng+/- eyes. This is also consistent with reduced sensitivity 

Eng+/- EC compared to Eng+/+ when challenged under oxidative stress [95]. Therefore, 

uncoupling of eNOS is an unlikely possibility since Eng+/- EC express less eNOS and exhibit 

lower oxidative stress. How endoglin deficiency contributes to reduced level of oxidative stress 

and eNOS expression/function is beyond the scope of the present study and subject of future 

investigation.  

Cytosolic NADPH, which has the same fluorescence characteristics as NADH, could be 

contributing to the signal attributed to NADH in this study. However, Chance et al. demonstrated 

that the fluorescence signal originates mostly from NADH in the mitochondria and the contribution 

of NADPH - present in cytosol - is very small [180]. The fluorescence signal is mainly from NADH 

since its quantum yield is much higher than NADPH (1.25 to 2.5), its concentration is 5 times 

larger than NADPH, and is the only one affected by metabolic perturbations [181-183]. Thus, 

NAPDH contribution to the NADH signal and the change in the NADH signal due to diseases 

studied in this thesis was assumed to be small and was ignored. 

The current study demonstrates the utility of RR to detect ocular injury and mitochondrial 

OS under cryo conditions that optimize the quantum yields of NADH and FAD. Moreover, we 

have developed an experimental in vitro protocol to measure mitochondrial OS at 37oC using time 

lapse microscopy and the results using this system is described in the next chapter. 

 

 

 

 

 

 

 



 

 

54 

 

 

 

 

 

 

 

 

 

Chapter 3 

 Microscopy studies of retina and lung cells 

in vitro 
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3 Microscopy studies of retina and lung cells 

The structural and metabolic properties of biological tissues could be affected by diseases. 

The visualization and quantification of changes in cellular structure and metabolic function helps 

in early detection and progression monitoring of diseases. Fluorescence microscopy allows to 

study both morphological and metabolic changes in biological samples with cellular and 

subcellular resolution.  

In the first part of this chapter, structural changes of the retinal vasculature due to oxidative 

stress were studied in microscopic images of clinically relevant eye diseases. A multi-parameter 

quantification method was implemented to quantify early morphological changes due to oxidative 

stress and injuries [55]. This method was applied to wholemount retinal trypsin digest images of 

diabetic Akita/+, and Bcl-2 knocked out mice models [55]. Unique features of retinal vasculature 

were extracted to monitor early structural changes and retinopathy, as well as quantifying the 

disease progression. These features include number of vascular cells, population ratios of 

endothelial cells to pericytes (an indicator of pericyte loss), fractal dimension, vessel coverage, 

and number of acellular capillaries. Current gold standard method for measuring all of these 

parameters is the tedious process of manual counting and analysis which is prone to errors. 

Quantification using the method presented in this chapter will be helpful in evaluating 

physiological and pathological retinopathy in a high throughput and reproducible manner. 

Moreover, the implemented software is able to identify diabetic retina and normal retina based on 

the quantified parameters [55]. 

In the second part of this chapter, cellular metabolic changes associated with oxidative 

stress (metabolic and oxygen stress) and injuries (Persistent Pulmonary Hypertension; PPHN) is 

presented in live lung cells. Utilizing time-lapse microscopy in combination with an experimental 
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protocol I developed for live cell imaging, the dynamics of the reactive oxygen species (ROS) 

production was assessed in pulmonary artery endothelial cells (PAECs). ROS play a vital role in 

cell signaling and redox regulation but when present in excess, lead to numerous pathologies. The 

aim of this in vitro study was to assess mitochondrial O2
•- production in PAECs over time using a 

novel quantitative approach. The rate and sources of O2
•- production were assessed using targeted 

metabolic modulators of the mitochondrial electron transport chain (ETC) complexes, specifically 

mitochondrial complexes’ uncouplers and inhibitors, and inhibitors of extra-mitochondrial sources 

of O2
•-. After stabilization, the cells were loaded with mitochondrial-targeted hydroethidine (Mito-

HE, MitoSOX) to monitor the production of O2
•-. Time-lapse fluorescence microscopy was used 

to monitor the dynamic changes in O2
•- production over time. This novel method can be applied in 

other studies that examine ROS production from different mitochondrial ETC complexes during 

ROS-mediated injuries in vitro. 

This chapter covers both the retina and lung cell fluorescence microscopy in details and 

discusses the results obtained by the developed methods. 

3.1  Microscopy of retinal injuries  

Retinopathy involves diverse vascular complexity and other changes in the neuroretina 

associated with the pathogenesis of many ocular diseases including diabetic retinopathy [63], 

hypertension [184], and age related macular degeneration [185]. Once the degree of retinopathic 

injury can be detected, it will be possible to treat and slow down or stop its progression. Therefore, 

creation of a system with multi-parameter diagnosis of retinal structural changes in their early 

stages is a high priority and helpful to investigate the pathogenesis and progression of retinopathy. 
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Recent studies have reported image procedures on retinopathies [186-190]. However, none 

of these methods consider more than one feature to classify the retina as either healthy or injured. 

For example, there are studies using computer-assisted procedures to measure the caliber of retinal 

blood vessels as a feature of retinopathy [191-194], and most of these procedures are semi-

automatic. In addition, many of these studies analyzed fundus images, which typically lack high 

resolution details.  

High resolution microscopy images of the retinal trypsin digest slides allows for 

quantifying the clinically relevant features of the retinal vasculature, the majority of which cannot 

be studied in low resolution fundus images. Wholemount retinal trypsin digest, which is the gold 

standard method for analyzing the diabetic retinal vasculature [195, 196], makes it possible to 

study various structural changes such as capillary degeneration, vascular cell apoptosis, and 

microaneurysms [197]. The first two abnormalities are correlated with changes in retinal 

vasculature during early stages of diabetes, hypertension [198], and also are seen in mice with Bcl-

2 deficiency. The Bcl-2 expression plays an important role in regulating apoptosis and 

angiogenesis, and its deficiency is associated with decreased number of vascular cells and vascular 

density in the retina [70]. 

We have developed a multi-parameter image cytometry tool to quantify the parameters 

associated with the early stages and progression of retinopathic injury during diabetes. Using this 

tool, two different vascular cell types, endothelial cells (EC) and pericytes (PC) can be segmented 

and the number of each cell type quantified and the ratio of EC to PC (EC/PC ratio) calculated. 

The presented tool also determines other retinal vascular parameters including the number of 

acellular capillaries, vessel coverage, and fractal dimension, all of which correlate with progression 

of diabetic retinopathy [199-201]. To the best of our knowledge, this is the first time that automatic 
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multi-feature quantification of diabetic retinopathy and vascular changes in retinal trypsin digests 

has been presented. Our quantification method measures subtle retinal vascular changes, which 

are markers of early microvascular dysfunction during diabetes. Such developments will open the 

door for advanced quantitative assessments, which could substantially contribute to a better 

understanding of the pathogenesis and prediction of diabetic retinopathy. Moreover, our 

cytometric tool selects two, three or all of the detected parameters depending on the disease stage, 

and utilizes classification techniques to separate healthy and injured retina. This tool allows for 

automated analysis of retinal trypsin digest preparations for high throughput assessment of 

structural retinopathy changes when needed.  

The following sections covers how the samples are prepared, how the experiment is 

conducted and the obtained results will be discussed. 

3.1.1 Injury model   

In this study, retinal vascular parameters are compared in diabetic mice (6 months and 11 

months of age) and bcl-2 deficient mice (6 weeks of age) with their corresponding wild types. 

Akita/+ mice (Jackson Laboratory, Bar Harbor, ME) have a mutation in their insulin gene, and the 

heterozygous male (Akita/+) mice become diabetic by 4 weeks of age. The retinas from these mice 

show differences in cell distribution and vasculature complexity [145]. They also show the growth 

of acellular capillaries, which are vessels that contain no cell nuclei, with long-term diabetes. These 

vessels are very thin and are a common hallmark of non-proliferative diabetic retinopathy.  

The germline targeting of the Bcl-2 gene and the generation of mutant mice have been 

previously described [202]. Litters produced by mating heterozygote mutant mice are genotyped 

by PCR of genomic DNA extracted from tail biopsies. Bcl-2 -/- mice exhibit decreased retinal 

vascular density during development of retinal vasculature prior to 6 weeks of age. Decrease in 
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retinal vascular density is mainly attributed to decreased numbers of endothelial cells and pericytes 

in the absence of bcl-2 [70].  

Retinal trypsin digests from diabetic Akita/+ mice, Bcl-2 deficient (Bcl-2-/-) mice, and 

wild type (WT) mice were prepared and imaged. These studies were conducted in accordance with 

the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research, and approved 

by the Institutional Animal Care and Use Committee of University of Wisconsin School of 

Medicine and Public Health. 

3.1.2 Microscope slide preparation 

A total of 14 mice were sacrificed, including three 6 week-old bcl2-/- and their wild type 

(WT) littermates, two 6 month-old diabetic Akita/+ and their WT littermates, two 11-month-old 

diabetic Akita/+ and their WT littermates. Retinas (n=28) of these six groups of mice were digested 

in a solution of trypsin, which carefully leaves retinal vascular network intact while digesting other 

tissues. Following the digestion, retinal vascular preparations are mounted on charged microscope 

slides, dried, stained with periodic acid-schiff (PAS) and hematoxylin, and coverslipped for 

virtualization and quantitative assessments, as previously described [203].  

3.1.3 Fluorescence microscopy 

A Nikon Ti-E inverted microscope used for the retinal vasculature studies. It includes four 

fluorescent interchangeable filter cubes in addition to the standard DIC and bright-field channels. 

It is commonly used to study normal cell processes as well as those of diseases, cell signaling, 

neurobiology, molecular pathology, and so on in cellular and sub-cellular resolution.  

Bright field images were acquired using an overhead halogen lamp, whereas the fluorescent 

images use a mercury arc lamp, to take advantage of its intense peaks in the ultraviolet range. The 

images were captured using a charge-coupled device (CCD) camera (Q-imaging, Aqua Exi, 14 bit, 
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6.45μm per pixel) with exposure time (0.68 µsec/pixel in red channel) set to ensure proper use of 

the dynamic range of the camera, while avoiding saturation and photo bleaching. The filter set in 

the blue and red channels filters excitation spectra at 340-380 nm and 528-553 nm, respectively 

with emission spectra at 435-485nm and 590-650nm, respectively [204].  

The retinal trypsin digests were imaged at a magnification of 40× with a scale of 0.16µm 

per pixel. The images were captured using the Qimaging camera with a field of view (FOV) of 

1392 x 1040 pixels. Red fluorescence filter set with excitation at 540 nm (25 nm bandwidth) and 

the emission at 620 nm (60 nm bandwidth) was used. Images obtained under these settings 

captured the vasculature network of the retina (Figure 3-1; left image). Besides fluorescence 

imaging, bright field imaging was performed to capture cell nuclei images (Figure 3-1; right 

image). Four fields of view were chosen from each group of retina. The fields of view were chosen 

from the mid-periphery and far-periphery areas of the retinas, one FOV in each quadrant of retina. 

The acquired images were saved as TIFF files and analyzed in MATLAB (MathWorks, Inc.).  

3.1.4 Image processing 

This subsection explains how to extract the various investigated parameters from the 

captured images and go through the details of the developed multi-parameter image processing 

tool.  

 Cell Detection and Count 

The image processing program detects two vascular cell types, EC and PC from the retinal cell 

image (Figure 3-2b, left image; captured in bright field). The contours of the cell nucleus in each 

image are determined using the segmentation algorithms (shown in Figures 3-2a) based on the 

active contour method.  
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Figure 3-1: High resolution microscopy images of a typical mouse retinal vasculature trypsin digest. Retinal 

vasculature (left panel) and cell nuclei (right panel) images acquired from different FOVs to detect changes in retinal 

vasculature and vascular cells (scale bar represents 15 μm). 

 

 

Active contour technique segments the nuclei of these vascular cells by evolving a level 

set curve which moves toward the nuclei boundaries by minimizing an energy function. Edge-

based active contour is sensitive to the initialization of the level set function (initial image) and 

hardly stops at the right boundaries of the cell nuclei with non-homogenous intensity and weak 

edge. Therefore, region based active contour [205, 206] was applied, using the Mumford and Shah 

segmentation model [205].  

To decrease the processing time, level set function was initialized to a binary mask (Figure 

3-2b, middle panel, top image) which was resulted from FIR convolution of the original cell image 

and then adaptive thresholding of the convoluted image (will be discussed later). Using this mask, 

level set curves converged to the final contour after 100 iterations.  

Regular model of active contour can only segment cells whose locations are far away from 

each other. If the cells are clustered together, this model will fail to segment individual cells. After 

detecting the boundary of the cell cluster, the front stops moving, no matter how many iteration 

steps are used, it is impossible to segment individual cells from the group. To improve the 

segmentation of the clustered cells, the gradient of the cell image (Figure 3-2b, middle panel, 
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bottom image) was considered as the input image of the active contour program. The gradient 

image enhances the edges of the cells and decrease the segmentation error due to clustered cells. 

Last stage of the Figure 3-2b shows the output of the active contour algorithm which is a binary 

mask containing the borders of the cells.  

As mentioned earlier, a spatial finite impulse response (FIR) filter [207] was applied to 

enhance the object-background contrast [208] of the image and provide a high quality binary mask 

for the active contour algorithm after adaptive thresholding. For image g(x,y), class c(x,y), and 

spatial FIR filter k(x,y), the contrast enhancement procedure is: 

                              𝑓(𝑥, 𝑦) = 𝑘(𝑥, 𝑦) ∗ 𝑔(𝑥, 𝑦) 

                              𝐶(𝑥, 𝑦) =  {
C0,        𝑓(𝑥, 𝑦) < 𝑇

C1,        𝑓(𝑥, 𝑦) ≥ T
    

where * is the convolution operator, f(x,y) is the filtered image, C0, and C1, represent the 

two classes of the filtered images, and T is the threshold. T was initialized using Otsu method [209] 

to minimize the weighted sum of the intensity variance within each of the pixel classes (C0, and 

C1). Then using adaptive thresholding [210], the threshold level for each pixel is optimized based 

on the intensity statistics of a local neighborhood surrounding the pixel. Function C(x,y), is a two-

category linear classifier implemented as a spatial FIR filter. Given an ideal classified image ic(x,y) 

and the input image g(x,y), the optimum FIR filter that maps g(x,y) to ic(x,y) is obtained. 

                    𝑒(𝑥, 𝑦) = ∑ {
(ic(𝑥, 𝑦) − 𝑓(𝑥, 𝑦))

2
,       𝐴 < 𝑓(𝑥, 𝑦) < 𝐵

0,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where error e(x,y) is nonzero only when the filter has not acquired the contrast defined by 

[A, B]. Minimization of e(x,y) results in a filter k(x,y) that yields the best contrast for successive 

thresholding within [A, B].  

(3-1) 

(3-2) 
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(a) 

 

 

(b) 

 

Figure 3-2: a) Flowchart of the cell segmentation procedure. b) Output of the segmentation algorithm in 

different stages. 
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 Determination of Cell Type and Calculation of the EC/PC Ratio 

Nuclear morphology was used to distinguish between pericytes (PC) and endothelial cells (EC). 

Pericytes have a round nuclei and protuberant position, whereas endothelial cells have a more 

elliptical shape. Since pericytes are more round in shape, the ellipticity of the cell is used as a 

parameter to determine whether a cell is EC or PC. In short, the diameter of the cell was measured 

for each pixel in the cell border by determining the distance between the pixel and a pixel exactly 

half way around the border of the cell. The ratio of the largest diameter to the shortest was then 

stored as the ellipticity of the cell. Cells with ellipticity greater than 2 were categorized as EC, and 

all other cells were categorized as PC. The threshold value of 2 is found empirically to best 

correlate with the results of expert analysis.  

To evaluate the accuracy of the proposed nuclei segmentation and cell type determination, 

sixteen FOVs (Field of Views) of four retinas from 11 month-old WT mice were considered that 

covered over 1000 nuclei. Since there is no ground truth for the segmentation, manual evaluation 

was used as a benchmark, and we compared the automatic approach to this manual benchmark for 

accuracy counts (Table 3-1).   

 

 Acellular Capillary Detection and Count 

The number of acellular capillaries is another parameter of interest. These are also referred to as 

ghost vessels that are a sign of later non-proliferative complications of diabetes. Acellular 

capillaries are those blood vessels, which have no cell nuclei and lack perfusion, and as a result 

have smaller widths than healthy capillaries (Figure 3-3a; white arrow). The program measures 

the caliber of the vasculature using binary image (Figure 3-3b) and marks areas, which have a 

width less than 40% of the average width of vessels in the retina (Figure 3-3d). Using 

morphological tools, the connection of the pixels in the marked areas in a small neighborhood was 
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then investigated. Capillaries with a diameter smaller than 20% of adjacent capillaries were 

identified as strands or touching vessels and were not counted.  

To determine the vessel caliber, defined as the average width of vessels, the total area of 

the vasculature from the original binary image was divided by the total length of the vessel. The 

total vessel length was determined using the morphologically thinned vasculature. A skeleton-

based method [211] was applied to achieve the thinned vasculature image. In this image, the entire 

vasculature was reduced to a cross-sectional width of 1 pixel (Figure 3-3c). Thus, the total number 

of pixels representing the vasculature is equal to the total length of all vessels within the retina.  

 

 
Figure 3-3: Acellular capillary detection: a) vasculature image, b) binary image of vasculature, c) morphological 

thinning of vasculature used to determine vessel caliber, d) marked connected areas with a width less than 40% 

of the average vessel’s caliber 



 

 

66 

 

The performance of the acellular capillary detection algorithm is dependent on the quality 

of the binary image containing the retina vasculature and acellular capillaries. This binary image 

is implemented by dynamic local thresholding. The threshold level was initialized applying 

mixture models method [212] and then fine-tuned locally for each 32×32 neighborhood within the 

image to detect very thin acellular capillaries.   

 Determination of Fractal Dimension 

Fractal dimension of the retinal vasculature is another parameter quantified using a technique 

known as the box-counting method [213-216]. In this method, the vasculature image was first 

divided into a number of smaller “boxes”. Then, the number of boxes which contain part of the 

vasculature was determined. This process was then repeated with boxes of different sizes. If the 

structure is in fact fractal, an exponential relation is expected between the box size (ε) and the 

number of boxes required to cover the entire structure (N). Equation 3-3 shows this relationship: 

𝑁 =  𝐶𝜀−𝐷𝑓                                                              (3-3) 

where C is a constant of no consequence in this context, and Df is the fractal dimension of 

the structure. The fractal dimension is found by solving equation 3 to obtain an expression 

involving a logarithm with base ε. However, while equation 3-3 will work for a true fractal, 

physical structures do not exhibit fractal behavior on all scales. Thus, the limit of the equation 3-3 

must be taken as the box size approaches zero. To do this effectively, L’Hopital’s rule can be used 

to determine the limit of the equation based upon the equation's derivative. The fractal dimension 

can then be found by determining the slope of the log-log plot of N against ε (equation 3-4).  

𝐷𝑓 =  − lim
𝜀→0

log 𝜀
 𝑁 = − 

𝜕(log 𝜀
 𝑁)

𝜕𝜀
                                         (3-4) 
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 Vessel Coverage 

One of the markers of late-stage retinopathy is a denser vasculature. Total vessel coverage is 

determined for each field of view by the total number of pixels representing the vasculature in the 

binary image.  

3.1.5 Injury classification   

The quantified parameters of the cell and vasculature images of the retinas were used to 

classify retinas as normal or injured. Classification was performed using a nonlinear classifier, 

support vector machine (SVM). SVM classifier attempts to maximize the margin of error and 

allows for better generalization of the results [217]. This Kernel-based classifier uses radial basis 

functions and the kernel trick to project the data into a high dimensional space for easier separation. 

Gaussian radial basis function was used in the current study to map the training data set into kernel 

space where a maximal separating hyperplane was constructed.  

The accuracy, sensitivity and specificity of the classification are calculated through the 

following equations: 

                     Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                

                     Sensitivity =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3-5) 

                     Specificity =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  

where TP and FN are the number of diabetic retinas classified as diabetic or normal, 

respectively. Similarly, TN and FP are the number of normal retina detected as normal or diabetic. 

FN and FP were determined using the leave-one-out cross-validation method [218]. In this method, 

one data point is withheld from the system during its training phase, and then the point is classified 

using the newly trained system. 
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3.1.6 Results 

In the present study, we have established an image analysis tool to assess and quantify the 

structural changes in the retinal vasculature either at the early stage of the disease or as the injury 

progresses. To determine the effect of diabetes and germline deletion of Bcl-2 on the retinal 

vasculature, five parameters were quantified in retinas from Bcl2 -/- mice and their control 

littermates at 6 weeks of age, as well as retinas from Akita/+ mice and control littermates at 6 and 

11 months of age. The results of this method demonstrated a 26.43%, 16.6%, and 25.7% fewer 

number of cells and 12.38%, 14.97%, and 17.8% lower vessel coverage in the three 

aforementioned groups of the diseased retina compared to the corresponding controls. Both groups 

of diabetic retinas at 6 and 11 months of age showed higher EC/PC ratio compared to their controls 

(38.7% and 33%, respectively) and only 11 months old diabetic retinas showed significantly larger 

number of acellular capillaries (126.3%) and higher fractal dimension (1.1%) compared to the 

control. The details of the results for the 11 month-old diabetic retinas, developing changes in the 

five features, is provided in figure 3-4.  

All the quantified parameters were statistically investigated using two tailed Student’s t-test 

(n=16 FOVs for each group). A p value < 0.05 was considered significant. 
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a 
 

 

b 
 

Figure 3-4: a) Left: cell images represent that an 11 month-old diabetic retina has a fewer number of cells compared 

to the normal retina at the same age. Right: vasculature images demonstrate lower vessel coverage and larger number 

of acellular capillaries (shown by arrows) in a diabetic retina as compared to control (scale bars represent 20μm). b) 

Bar graph plot comparing five unique features in a diabetic retina versus a normal retina from 11 month-old mice. Bar 

graphs show the mean values and standard errors of each feature detected in retinas. Diabetic retinopathy resulted in 

significant decrease statistically in the total number of vascular cells, and vessel coverage while increase significantly 

the EC/PC ratio, number of acellular capillaries and fractal dimension. Please note that the total number of cells and 

vessel coverage were scaled by 10-1 and 10-5, respectively. For showing the difference between the fractal dimensions 

of the two groups, this parameter was presented with different y axis on the right. The number of the fields of view in 

each group of retina is 16. 
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 Injured Retinas Have Fewer Number of Cells 

The retinas from diabetic mice contained fewer cells compared to the wild type normal mice of 

the same age (Figure 3-4a; left panel). For instance, the 11-month age group images from mid-

periphery and far-periphery areas of retina (sixteen FOVs) contained a mean number of 78.5 cells 

in diabetic mice and 105.6 in the wild type mice (p = 5.1205e-05). The first two bars in Figure 4b 

represent the mean and standard errors of the cell counts scaled by 10-1 within each group. The 

higher mean values in the wild type groups showed that the diabetes caused vascular cell death in 

the retina. Please note that cell segmentation algorithm resulted in an accuracy of 91.4% compared 

to manual cell count (Table 3-1).  

 Diabetic Eyes Have a Higher EC/PC ratio   

One of the hallmarks of early diabetic retinopathy is loss of PC. With progression of the disease, 

retinal vessels lose PC, leading to vascular dysfunction such as increased permeability and loss of 

EC. Thus, loss of PC results in a higher EC/PC ratio in diabetic retinas compared with retinas from 

wild type mice. The images showed a mean EC/PC ratio of 2.4053 for diabetic 11 month-old mice 

and 1.8084 for the wild type mice (p = 5.1772e-04). As expected, the mean values were lower in 

wild type groups than those in the diabetic groups.  Figure 4b shows the mean and standard errors 

of the EC/PC ratios within each 11 month-old group. PC determination algorithm resulted in 

87.87% accuracy in the EC/PC ratio on average compared to manual evaluation (Table 3-1). 

Table 3-1: Accuracy of the cell count and cell type determinations for 16 FOVs of images from four 11 month-old 

WT mice.  

Approaches EC count PC count Cell count E/P Cell count accuracy E/P accuracy 

manual 1161 688 1849 1.69 100% 90% 

proposed 1071 619 1690 1.73 91.4% 87.87% 

 



 

 

71 

 

 Diabetic Retinas Have a Larger Number of Acellular Capillaries 

Acellular capillaries in the retina arise from chronic exposure to hyperglycemia, have no cell nuclei 

and exhibit a very small width. The results from the vasculature images (from mid-periphery and 

far-periphery areas of retina) showed a significant difference between the number of acellular 

capillaries in the wild type and Akita/+ 11 month-old mice (Figure 3-4a; right panel). The mean 

acellular capillary number were 2.375 and 5.375 for wild type and Akita/+ mice, respectively (p = 

7.0414e-04). Figure 3-4b displays the mean value and standard errors of the number of acellular 

capillaries. 

 Injured Retinas Have Lower Vessel Coverage 

Our results indicated that the total area of the vasculature in the retinas from diseased mice was 

smaller compared to wild type mice (Figure 3-4a; right panel). The mean values of the number of 

pixels representing the vasculature were 672050 and 817790 for diabetic and wild type non-

diabetic 11 month-old mice, respectively (p = 1.4214e-05). Figure 4b shows the mean and standard 

error of the vasculature area scaled by 10-5 for each group. 

 Diabetic Retinas Exhibit Greater Fractal Dimension 

Our studies reveal a difference between the fractal dimensions measured in the retinal images of 

diabetic and non-diabetic 11 month-old mice. The mean values of the fractal dimension were 

1.8733 and 1.8499 for diabetic and non-diabetic mice, respectively (p = 1.9167e-08). Figure 3-4b 

shows the mean and standard error of these samples, illustrating a significant difference between 

the two groups. These results suggest that greater retinal fractal dimension, representing increased 

geometric complexity of the retinal vasculature as a sign of chronic diabetic retinopathy.  
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 Classification of Retinal Images Resulted in 85% Accuracy 

Table 3-2 provides classification results with different feature combinations. Features were 

selected based on the type and duration of the disease. Left panel in figure 3-5 shows the 

distribution of two features (cell count and vessel coverage) as an example of the classification 

using SVM classifiers. Crosses correspond to Bcl-2 deficient retinas and stars are related to normal 

retinas (control). The hyperplane on the top right corner is one of the classifiers that indicates the 

decision boundary between the two groups. This classification resulted in 85.4% accuracy, 94.8% 

sensitivity, and 77.5% specificity. The right panel in figure 3-5 represents the SVM classifier using 

three features including cell count, vessel coverage, and EC/PC ratio. The surface between yellow 

(diabetic) and blue (normal) regions is one of the classifiers, which makes the decision boundary 

between the two groups. Using these three features yielded in classification with 85.3% accuracy, 

88.8% sensitivity, and 81.7% specificity. 

 

Table 3-2: Performance of the SVM classifier for different groups under study. 

Disease Age Features  accuracy sensitivity specificity 

Bcl-2 deficiency 6 weeks cell count, vessel coverage 85.4 94.8 77.5 

 

Diabetes, 

Akita/+ 

6 months cell count, vessel coverage, EC/PC  85.3 88.8 81.7 

11 

months 

cell count, vessel coverage, EC/PC, 

acellular capillary count, fractal dimension 

75 71.7 81.7 
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Figure 3-5: Results of the classification using SVM method in retinas from a) 6 weeks bcl2-/- deficient and WT mice 

considering two features: cell count and vessel coverage b) 6 months diabetic Akita/+ and WT mice with three 

features: cell count, vessel coverage, and EC/PC ratio; Red crosses correspond to injured retinas and green stars are 

related to control. The boundary between yellow (injured) and blue (normal) regions is one of the classifiers. 

 

3.1.7 Discussion and conclusion on the retina study 

We have developed a novel multi-parameter quantification method to evaluate the health 

of retinal vasculature. This method employs image processing algorithms to detect the retinal 

parameters of interest including vessel coverage, acellular capillary count, fractal dimension, and 

vascular cell count and cell type. To validate the use of the proposed method, we compared the 

accuracy of the nuclei segmentation and cell type determinations with manual evaluations.  

Accuracy counts were divided into two categories: EC counts and PC counts. Based on these two 

counts, the total cell count and EC/PC ratios were evaluated and shown in Table 3-1. The total 

number of nuclei identified by each method was not the same. Overall, nuclei segmentation 

algorithm resulted in an accuracy of 91.4% compared to manual cell counting. The main source 

of error in the cell count was under-segmentation problem occurred due to overlapping cell nuclei. 
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Segmentation of images containing touching and overlapping cell nuclei is a challenge in cell 

segmentation [219, 220], and further investigation is needed to further reduce this error.  

It should be also noted that EC counts and PC counts assessed by each method were not 

the same. For computer-based approach, the most common error is the under-segmentation, while 

for manual segmentation, the discrepancy on whether to identify certain nuclei as EC or PC play 

a much larger role in accuracy rate. The inconsistency between the manual evaluations of cell type 

provides an idea of how well one could expect to do in comparison to the chosen standard. If two 

experienced biologists can only agree on 90% of the cell type results, then it is likely that any claim 

of above 90% for automatic cell type detection is just accidental. Our results suggest that 

performance of the proposed method for determining the cell type is comparable to manual 

evaluation. Considering the manual segmentation accuracy of around 90%, which is only 2.13% 

better than automatic segmentation method, our results reflect the overall difficulty of the problem 

and indicate good performance for the automatic method.  

The presented multi-parameter quantification method is able to analyze and monitor 

vasculature complexity in rodent models of diabetic retinopathy and Bcl-2 deficiency. Cell 

apoptosis [221-225], loss of pericytes [226-230], and lower vessel coverage are used to assess 

early signs of non-proliferative diabetic retinopathy. However, increased number of acellular 

capillaries [201, 228] and higher fractal dimension [231-234] were later complications and become 

more numerous with progression of diabetes. Diabetic retinopathy is a progressive disease and 

goes through all of these changes in a timely manner. Loss of pericytes is an early event, which is 

followed by vascular dysfunction, loss of EC, formation of acellular capillaries and 

microaneurysms, ischemia, and ultimately neovascularization that is the latest stage of the disease 

and is normally not seen in rodents. Our multi-parameter method selects these features based on 
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the duration of diabetes as a significantly dominant marker for detection of diabetic retinopathy. 

The duration of diabetes has a significant impact on the parameters indicated above. Thus, for 

animals with longest duration of diabetes all these changes are significant marker of diabetic 

retinopathy. Therefore, with longer duration of diabetes in 11 month-old groups all the features 

can be used to quantify the retinal changes and train the classifier. Figure 3-4 demonstrates that 11 

month-old diabetic retinas have a lower cell density and vessel coverage but a greater EC/PC ratio, 

higher number of acellular capillaries, and larger fractal dimension.  

The fractal dimension, which is a useful measure of the complexity present in the retinal 

vasculature, determines the self-similarity of the vessel structure. As retinopathy progresses, new 

and smaller blood vessels begin to grow out of the existing larger vessels, with similar 

characteristics to the larger vessels, showing that the vessel structure is in fact fractal. Our 

measured fractal dimension is close to the reported fractal dimension of a diffusion limited 

aggregation process (~1.7) [231-234]. In addition, there is a correlation between retinal complexity 

and fractal dimension. This correlation occurs because of the properties of fractal dimensions, 

which increases as the new vessels grow in with the same properties as the existing larger vessels. 

Our studies showed that greater retinal fractal dimension represents increased geometric 

complexity of the retinal vasculature associated with diabetic retinopathy. Since significant 

increases in acellular capillary formation and fractal dimension are usually observed after 6 months 

of diabetes [222, 228, 235], these parameters are not appropriate to quantify injury in the 6 month-

old diabetic groups. Thus, only cell count, vessel coverage, and EC/PC ratios were used for 

classification (Figure 3-5b).  
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In addition to diabetic retinopathy, another type of retinopathy induced by Bcl-2 deficiency 

was studied. Vascular cell count and retinal vascular density were selected as the markers for the 

early diagnosis of this type of retinopathy [70]. The cell count is an important indicator of 

retinopathy, as it is directly related to the early loss and later growth of new blood vessels. Thus, 

we expect the concentration of vascular cells in the retina and also vascular density to be two 

precursors of retinopathic injury at the early stages. At 6 weeks of age, Bcl2-/- and healthy retinas 

were classified (Figure 3-5a) with 85% accuracy showing that these two features are significantly 

effective, and our multi-parameter method is sensitive to quantify the early structural changes of 

retina with Bcl-2 deficiency.  

In conclusion, we have studied morphological details of retina including cell count, vessel 

coverage, and the EC/PC ratios which were associated with loss of the pericytes as the earliest sign 

of diabetic retinopathy [229]. Other quantifiable morphological features such as acellular 

capillaries and fractal dimension correlated with progression of diabetic retinopathy [232], were 

also investigated. The current multi-feature method has the capability to detect and quantify the 

structural changes in the vasculature of retina at the early stages of the disease, and provides an 

opportunity to get a comprehensive view of retinal vasculature at the cellular level. Therefore, with 

new advancements in new imaging modalities with cellular resolution it will be possible to utilize 

the method developed here for quantitative evaluation of retinal vasculature with significant 

accuracy. This knowledge will be instrumental in development of new treatment modality to stop 

the development and progression of the disease and save vision. With the addition of more features, 

we hope to create a system capable of detecting and classifying even small changes in the retinal 

vasculature, allowing for the earliest detection of the injury. Our system can also be used to assess 
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the impact of various gene mutations, deletions, and over expression on retinal vascular 

development and function in a high-throughput and reproducible manner. 
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3.2  Time lapse microscopy of live lung cells in vitro 

This section is dedicated to live cell studies, using fluorescence microscopy to assess reactive 

oxygen species (ROS) in PAECs due to the metabolic modulation, injury, and oxygen tension. 

ROS are biologically important molecules. They are involved in signaling, but when 

present in excess (oxidative stress), they exert deleterious effects on cell structure and function. 

There is an increasing evidence that reactive oxygen species (ROS) participate in diverse lung 

injuries [106-111] including persistent pulmonary hypertension of newborn (PPHN) [112, 113] 

and hypoxia, which are the subjects of current study. Understanding and discerning the role of 

ROS depends on the ability to measure and quantify the dynamics of mitochondrial ROS 

production in normal and stress conditions. A variety of metabolic modulators of mitochondria, 

such as ETC uncoupler and inhibitor, as well as oxygen stress conditions (hypoxia, and ischemia 

reperfusion) lead to altered mitochondrial ROS production [111-113, 236].  

ROS are produced in mitochondria and from non-mitochondrial sources, including the 

NADPH oxidase system and uncoupled endothelial nitric oxide synthase. Mitochondrial ROS are 

generated primarily during electron transfer along the electron transport chain (ETC) complex 

proteins. Of all the cellular sources of ROS, electron leakage from the ETC to O2 (dioxygen) is 

responsible for a steady flux of superoxide O2
•- anions, which makes mitochondria the major site 

of the primordial ROS production [204, 237-239]. Under physiological conditions, small amounts 

of ROS are generated due to partial reduction of O2 into O2
•- anion [16, 17, 239, 240]. The major 

areas for electron leak leading to O2
•- production includes flavins and quinones of the ETC 

complexes, and this is more prominent under conditions that decrease electron transfer to complex 

VI, the terminal electron acceptor [239].  Since O2
•- is the precursor of most of the downstream 
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ROS and it is also involved in the propagation of oxidative stress-mediated damages, it has become 

an important biomarker to assess oxidative damage of key macromolecules [240, 241].  

A fluorescence probe, and a derivative of Hydroethidine (HE), MitoSOX Red is widely 

used for mitochondrial-targeted O2
•- detection in live cells [14]. The positive charge on the 

phosphonium group in MitoSOX Red selectively targets this cell-permeant HE derivative to 

mitochondria [242]. Once in mitochondria, MitoSOX is oxidized by O2
•- and the oxidation product 

elicits fluorescence response [242, 243] proportional to O2
•- concentration. In numerous studies, 

MitoSOX use was validated with fluorescent microscopy [243-252] for selective detection of 

mitochondrial O2
•- in endothelial cells [246, 247, 253], cardiomyocytes [246, 251, 253, 254], 

fibroblasts [252], and neuronal cells [243, 245, 248-250]. However, none of these studies allow 

for real-time detection of the mitochondrial superoxide production. Therefore, we aimed to 

develop a simple and quantitative method for detection of the mitochondrial superoxide production 

simultaneously in a large population of live cells with MitoSOX.  

Since O2
•- is the primordial ROS, we devoted our effort in this study to monitor and 

quantify the dynamic changes in O2
•- production during modulation of ETC activities in PAEC, 

which to date has not been reported. We show for the first time that time-lapse microscopy in 

combination with MitoSOX can be used to quantitatively measure in real-time mitochondrial O2
•- 

production. Our method was validated in PAECs using modulators of ETC, inhibitors: rotenone 

(complex I), antimycin A (complex III) and KCN (complex IV), and an ETC uncoupler, PCP. In 

addition, to further ascertain that ROS are primarily of mitochondrial source, the SOD mimetics, 

Mito-tempol, and tempol were used during the perturbation of mitochondrial ETC function. 

Addition of the metabolic agents induced metabolic stress that led to dynamic changes in the rate 

of O2
•- production over time. It is worth noting that in other cell types, especially non-excitable 
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cells like PAECs, other sources of ROS production, for example NADPH oxidases (NOx) could 

contribute to the total O2
•- production during simulated metabolic stress. Therefore, additional 

experiments were conducted using apocynin to assess potential ROS production from NOx 

sources. Overall, the use of time-lapse microscopy provides an ideal approach to study the spatial 

and temporal changes in mitochondrial O2
•- production in real time during metabolic stress in live 

cells. Our method not only assesses the O2
•- production from the ETC, but also localizes the source 

of ROS in mitochondria and extra-mitochondrial sources.  

To demonstrate the capability of the presented method and the stablished experimental 

protocol, the dynamics of the superoxide production was also monitored, quantified, and compared 

in PAECs from injured hypertensive and normotensive animals. The protocol was also utilized to 

study the dynamics of the superoxide production in PAECs under oxygen stress conditions. 

Lastly, the application of this approach is not limited to studying dynamic ROS production 

in real time in PAECs, it can be used in other live cell types under normal and pathophysiological 

conditions. 

The following subsections will go through the experimental preparations, procedure, image 

processing as well as show and elaborate on the results.  

3.2.1 Live cell preparation 

PAECs from normotensive fetal lambs (NFL) and hypertensive fetal lambs (HTFL) as an 

injury model of PPHN were isolated and characterized using techniques described previously [119, 

255]. Isolated PAECs were cultured in DMEM (Life Technologies) with 20% FBS (Life 

Technologies) and 1 X antibiotic/antimycotic (Life Technologies) at 37°C in room air and 5% 

CO2. PAECs between passages 3 and 4 were used for our experiments, and were cultured (104 

cells/well) in 4-well chamber slides (Lab-Tek, VCAT) and kept in the incubator (room air and 5% 
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CO2, 37oC) before imaging. At the onset of each experiment and fluorescent imaging, the cells 

were loaded with 0.5 μM Hoechst (Life Technologies H1399, excitation/emission: UV/blue) in 2 

ml growth medium to stain the nuclei and then incubated for 30 minutes before imaging. Following 

incubation, the cells were washed twice, and Hank's Balanced Salt Solution (HBSS, Life 

Technologies 14025092) was added to the plate for subsequent fluorescent imaging. During the 

imaging, production of mitochondrial O2
•- was visualized in intact cultured PAECs loaded with a 

mitochondrial-targeted dihydroethidium (Mito-HE), red fluorescence probe (MitoSOX, Invitrogen 

M36008; excitation/emission: 510/580 nm; 0.5 μM). Once in the mitochondria, MitoSOX is 

oxidized by O2
•- and exhibits a red fluorescent response proportional to the O2

•- level. 

3.2.2 Time-lapse microscopy 

Live cell images were acquired at a magnification of 20× with a scale of 0.32µm per pixel, 

using the fluorescence microscope described in section 3.2.3. Time-lapse images were captured in 

the blue (Hoechst), red (MitoSOX), and bright field (BF) channels to monitor nuclei, 

mitochondrial ROS levels and the structure of the cells (Figure 3-6). Four FOVs of cells were 

imaged (one FOV in each chamber of the bottom-glass dish) under the aforementioned settings. 

The microscope is surrounded by a custom-made chamber (Okolab) housed around the stage, 

providing gas exchange and controlled temperature for time-lapse imaging over several hours. 

During the experiments, the level of the CO2 inside the chamber was maintained at 5% by mixing 

CO2 with room air at the proper ratio and chamber temperature was kept at 37 ± 2 °C. O2 and 

CO2 levels were continuously monitored with an O2-BTA model O2 sensor and CO2-BTA model 

CO2 probe (Vernier Co., Beaverton, OR).    
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Figure 3-6: Panel A: from left to right are cell images in bright-field, and blue (Hoechst) fluorescence.  Panel B shows 

Mito-tracker green and Mito-SOX red fluorescence signals, respectively. Panel C shows the overlay of the different 

fluorescence signals, left: merge of the red and green fluorescent markers demonstrates mitochondrial co-localization; 

right: all four fluorescent signals merged. Note that the scale bar in the right-bottom frame represents 32 µm (~100 

pixels).  
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 MitoSOX loading 

Production of O2•- in the live cells is visualized by MitoSOX Red chemical dye. This fluorescent 

probe is a triphenylphosphonium (TPP+)-linked DHE compound. It is preferentially attracted to 

the mitochondria by >100-fold compared with the cytosol [256] due to the strong negative 

mitochondrial membrane potential (m). In mitochondria, the accumulated MitoSOX is 

oxidized by O2
•- and the oxidation product exhibits fluorescence upon binding to mitochondrial 

DNA [242, 243]. The high matrix concentration of MitoSOX also allows the dye to compete with 

the endogenous mitochondrial O2
•- scavenger, MnSOD, for O2

•- [257, 258].  

For the time lapse monitoring of the O2
•- production, MitoSOX loading was performed 

online while the experiment was running in the microscope chamber environment. To maintain 

the high intra-mitochondrial concentrations of MitoSOX, the loading process was not followed by 

a wash. This approach keeps the MitoSOX concentration in mitochondria to compete with MnSOD 

for O2
•-. Ongoing binding to mitochondrial O2

•- allows for the real-time monitoring of the 

MitoSOX oxidation rate translated to the O2
•- concentration and production rate over time. 

 Co-localization  

Z-stacks of green and red fluorescence images of 20 randomly selected PAECs previously stained 

by Mito-tracker green and loaded online by MitoSOX red were acquired. The nuclear region of 

each cell image in z-stacks was excluded using the nuclear mask obtained in blue channel. Co-

localization analysis was performed by pseudo-coloring and merging green and red fluorescence 

images together. Observations showed that both fluorophores reside within the same 3D volume 

whose minimum size is defined by the resolution limits of the microscope (0.32µm at a 

magnification of 20×). Quantitative statistical analyses of both the spatial distribution and the 

correlation between the intensities of the green and red fluorescence images were performed to 
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measure co-localization. Co-localization was determined by quantification of overlapping 

channels, performed by using the “object based methods” algorithm of JACoP plugin V2.0 [259]. 

3.2.3 Experimental procedure 

Our experimental protocol was designed to measure changes in mitochondrial O2
•- 

production associated with metabolic stress conditions as a model of ROS mediated dysfunction. 

Time-lapse images of FOV were captured in blue, red, and bright field channels, all in 1-minute 

intervals for 80 minutes. Ten minutes of baseline imaging was followed by the addition of 

MitoSOX 0.5µM to the PAEC live cells. Imaging was continued for 20 minutes after the addition 

of MitoSOX. Then cells were treated with pentachlorophenol sodium salt (PCP, ETC uncoupler, 

Sigma Alrich #76480), rotenone (Complex I inhibitor, Sigma Alrich #R8875), antimycin A 

(Complex III inhibitor, Sigma Alrich #A8674), or potassium cyanide (KCN, complex IV inhibitor, 

Sigma Alrich #60178) to study the O2
•- production in the mitochondria as indicated by fluorescence 

intensity. Image acquisition continued for 50 min after adding the inhibitors/modulators. These 

agents also provide means to validate mitochondrial O2
•- production in PAECs during online 

assessment of MitoSOX oxidation based on our experimental protocol.  

To demonstrate the capability of our method to localize the source of mitochondrial O2
•- 

under the stress condition, a dual agent (metabolic modulator) experimental protocol was designed. 

Five minutes after initiation of uncoupling induced by addition of the PCP, a metabolic inhibitor 

(rotenone, antimycin A or KCN) was administered. This approach identifies the specific ETC 

complexes associated with the large increase in O2
•- using specific blockers, rotenone (complex I), 

antimycin A (complex III), or KCN (complex IV). Fluorescent recording was for 50 min after 

adding the second agent. These experiments were designed to determine the primary source of 

mitochondrial O2
•- during uncoupling (PCP) of mitochondrial respiration.  
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Dual-agent experimental protocol is also helpful to validate mitochondrial O2
•- production 

with real-time monitoring of MitoSOX oxidation using positive controls (uncoupler or inhibitor) 

as first agent and negative control (Mito-tempol) as second agent. 

For the study of the cellular ROS dynamics in oxygen stress conditions, the experimental 

protocol was slightly adjusted. For the hypoxic condition, cells were incubated in hypoxic 

condition (3% oxygen, balanced nitrogen) for 2 hours and then continuously were exposed to 

hypoxic condition for imaging. For the stress condition resembling ischemia reperfusion, cells 

were incubated in hypoxic condition for 2 hours but then imaged in normal oxygen condition. 

Mito-SOX loading and drug treatment were performed based on the original experimental protocol 

described earlier. The changes in the superoxide production rate was quantified then in hypoxic 

cells before and after drug treatment. 

3.2.4  Image and signal processing 

The following subsections explain in detail the image and signal processing algorithms that 

were developed for time-lapse images. 

 Cell segmentation  

The segmentation algorithm described in section 3.2.4 was used to detect the border of the cells in 

the bright field images. The obtained mask (cells contours) was applied to the time-lapse image 

stack in the red fluorescent channel. The nuclei were also identified in the blue images and the 

resulted binary image was used as a mask for the stack of the red images to exclude the nuclei 

contribution from red intensity profiles. The mean intensity of the mitochondria in red channel 

images was calculated as a raw intensity profile of the live PAECs over time. This profile helps to 

monitor the dynamics of the mitochondrial ROS production before and after altering ETC function. 
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 Intensity profile extraction 

Figure 3-7 represents the overall methodology to obtain final intensity profile of the cells from the 

input fluorescent images. Intensity profile of the red fluorescence images shows the dynamic of   

 
Figure 3-7: A schematic illustration of the methodology used to obtain the MitoSOX fluorescent intensity profiles 

of the cells from the input fluorescent images. The schematic flow chart shows the same approach for a typical 

single or dual-agent experiment.  
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O2
•- production in response to MitoSOX (added at t=10 min) and metabolic agents (added at t=30 

min). In order to quantify the dynamic changes in mitochondrial O2
•- levels, and compare the 

changes in O2
•- production between the control group (PAECs with MitoSOX i.e. no treatment) 

and treated groups (PAECs treated by inhibitor or/and uncoupler), the raw intensity profiles were 

first background subtracted, and secondly slope calibrated. Day-to-day variation of light intensity 

and illumination pattern, led to variations in the basal level intensity, which was accounted for as 

background subtraction. A linear scaling, slope calibration method, which preserves the slope 

ratio, was employed for better demonstration and comparison. The slope calibration was done in 

the single agent experiments, using the linear property of the MitoSOX-induced intensity rate (for 

20-minute interval after administration of MitoSOX and before addition of the metabolic agent). 

The slope of the linear fit of the intensity profiles was calculated in the MitoSOX interval (t=11-

29 min) for both control and treated groups. The MitoSOX-interval slope of the cell intensity 

profile in both control (no treatment) and treated groups were calibrated based on the MitoSOX-

interval slope of a control in such a way that their slopes at this interval and before adding the 

agent were the same. Then the difference in the slope of the control and treated groups profiles 

was distinguishable after adding the agent. Therefore, the resulted intensity profiles are visually 

comparable for control and treated groups in the time interval of t=30-80 min which is helpful to 

evaluate the effect of the metabolic agent on the intensity profile. As mentioned earlier, for the 

dual agent experiments, the second agent, rotenone, antimycin A or KCN was administrated five 

minutes after addition of the PCP. Since the objective of the dual agent experiments is the 

evaluation of the inhibitor effect in the presence of the PCP, the slope calibration was applied 

based on the PCP-interval slope (t=33-35 min) in such a way that their slopes at this interval and 

therefore before adding the second agent was the same. The resulted intensity profiles then are 
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compared to the PCP group and the dual agent groups in the time interval of t=35-80 min to 

evaluate the effects of the ETC inhibitors (rotenone, antimycin A and KCN) in the rate of the 

intensity after oxidizing the ETC with PCP.  

3.2.5  Quantification of superoxide dynamics  

 Parametric nonlinear modeling 

Exponential and sigmoidal models were employed for describing the time course of the red 

fluorescence intensity of the treated and control cells. These models provide a way to evaluate the 

temporal responses of the cells to metabolic perturbation.   

The exponential and sigmoidal models were solved for six coefficients including 

amplitudes b and c, the time constants T and τ (equations 3-6 and 3-7), the constant intensity offset 

a, and the displacement factor d (along the time axis) to fit the slope calibrated profiles of the 

intracellular intensity over time for each group of experiments including n=6 for both treated (I1), 

and untreated (I2) groups:  

                   I1(t) ~ a+𝑏 ∗ 𝑒− 
𝑡−30

𝑇                                                                 (3-6) 

                   I2(t) ~ 
c

1+d∗𝑒
− 

𝑡−30
𝜏

                                                                     (3-7) 

For the exponential model, T is the time point when the intensity level reaches to 65% of the 

ultimate value, a.  

The aforementioned nonlinear fits describe the surge and stationary phases of the rates of 

O2
•- production of the PAECs in the presence and absence of metabolic agents/modulators. The 

exponential model also provides the parameter of  
−𝑏

𝑇
, which quantifies the slope of the exponential 

fit right after the addition of the metabolic agent and compared the effects of the mitochondrial 

oxidizing agent (PCP) vs. the mitochondrial reducing agents (e.g. rotenone or KCN). Similarly, 
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𝒄𝒅

𝝉(𝟏+𝒅)𝟐
 quantifies the slope of the sigmoidal fit at the same time point to compare the rates of O2

•- 

production in the absence and presence of the metabolic agents. 

 Slope ratio (linear approach)  

After calibration for the dual agent experiments, the ratio (SR) of the second agent-interval (t=35-

37 min) and first agent-interval (t=33-35 min) slopes, which were obtained by linear fit in the 

corresponding intervals shows the changes in the rate of the intensity and O2
•-  production after the 

administration of the second metabolic agent.  

               𝑆𝑅 =  
𝑠𝑒𝑐𝑜𝑛𝑑 𝑎𝑔𝑒𝑛𝑡 𝑠𝑙𝑜𝑝𝑒(35−37min)

𝑓𝑖𝑟𝑠𝑡 𝑎𝑔𝑒𝑛𝑡 𝑠𝑙𝑜𝑝𝑒(33−35min)
                                          (3-8) 

Linear approach provides the possibility to quantify the effect of the reducing agents (ETC 

blockers) in the presence of the oxidizing agent (PCP). 

3.2.6 Statistical analysis 

Data are shown as means ± SE. Student’s t-test was used for normally distributed data (n=6 

for each group). A p value < 0.05 was considered significant. 

3.2.7 Results  

Figure 3-6 shows the localization of MitoSOX in mitochondria proving that we have studied 

the mitochondrial superoxide production. Microscopic images captured in bright field and 

fluorescent channels (Figure 3-6: panels A and B) show the cell structure/shape, nuclei and 

mitochondria stained with Mito-tracker (50 nM), and mitochondrial O2
•- production detected by 

MitoSOX (0.5 μM). Panel C shows the overlay of the red and green fluorescent markers 

demonstrating mitochondrial co-localization. Co-localization of MitoTracker Green with the 

mitochondria-probe MitoSOX Red in PAECs confirmed that O2
•- anions were produced from 
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mitochondria in cells exposed to metabolic stress conditions. The degree of co-localization of these 

two staining in the PAECs was 0.91± 0.06 indicating significant co-localizations. 

This section will now go through the results of the ROS studies in PAECs isolated from 

normotensive lamb (NFL) and hypertensive lamb (HTFL) performed under metabolic stress, and 

oxygen tension conditions. 

 ROS production in NFL PAECs under metabolic stress 

Representative profiles in figure 3-8 show that the addition of MitoSOX increases the intensity of 

cell images gradually in the fluorescent red channel (t=10-29 min), but the rate of this increase 

occurred significantly later with the administration of uncoupling or/and inhibiting agents. The top 

panel in figure 3-8A displays red fluorescent images of PAECs from which intensities were 

translated to the rate of O2
•- production in mitochondria. The first row is the control (CTRL) group, 

the second and third rows are cells with the addition of uncoupler (PCP, 15µM), and inhibitor 

(KCN, 20µM), respectively. The first column of images is the first frame of the time-lapse imaging 

(t=0 min) showing the FOV of interest with no contrast between cells and background. The second 

column of images shows the same FOV just before adding the uncoupler or inhibitor at time t=30 

min. The addition of the agents enhances the contrast between cells and background due to 

increasing O2
•- production in mitochondria, as evidenced by the increased MitoSOX (added at 

t=10min) fluorescent signal. Compared to the second column, the third column images show the 

frames (at time t=60 min) with slight increase of the intensity in the first row (CTRL group), and 

significant increase of the intensity in the second and third rows due to exponential increase of O2
•- 

production after adding KCN and PCP, respectively. The last column of images shows the frames 

at time t=80 min demonstrating larger increase of ROS production rate in the control group (first 

row), and smaller increase of ROS production in the treated groups (second and third rows). These 
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observations are consistent with the intensity profiles demonstrated in panel B. Figure 3-8B shows 

the corresponding quantitative changes in the fluorescent intensity in the cell after calibration. 

 
 

Figure 3-8: Panel A: representative raw frames from image stack of time-lapse microscopy showing dynamic O2
•- 

production in 3 experiments using live PAEC loaded with MitoSOX in control (no treatment), in the presence of 

complex IV inhibitor (KCN) or the uncoupler PCP. Elapsed time is indicated in the upper left corner of each 

frame (0, 30, 60 and 80 min). Note that the scale bar in the right corner of the right bottom frame is the same for 

all frames and is 32 µm. Panel B: representative dynamic recordings of mean fluorescence intensity profiles of 

the cells in the three aforementioned conditions. The blue curve displays the dynamic of the fluorescence intensity 

in control cells over time; the green and purple curves represent the fluorescence intensity in cells treated with 

PCP and KCN, respectively. The arrows indicate the time MitoSOX and agents were added to the cells. 

F.A.U.,fluorescence arbitrary unit; KCN, potassium cyanide; PCP, pentachlorophenol sodium salt. 
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Inhibiting and uncoupling the mitochondria (purple and green curves, respectively) significantly 

increased the rate of O2
•- production when compared to the control rate of O2

•- production. Figure 

3-8B also demonstrates that uncoupling the mitochondrial ETC with PCP resulted in an abrupt and 

marked increase in the rate of O2
•- production when compared to the KCN treated cells. The slow 

but progressive increase of fluorescence over the 30-min to 80-min interval indicated that ROS 

production did not result from spontaneous auto-oxidation of MitoSOX molecules at stress 

conditions but involved cascade of enzymatic reduction-oxidation reactions and active cellular 

responses. Enhanced fluorescence intensity was evident right after addition of the metabolic 

agents, and its intensity increased continuously and exponentially over time, demonstrating a time-

dependent amplification of ROS production. 

 To quantify the rate of O2
•- production in the absence and presence of inhibitors or an 

uncoupler (added at t=30-80 min), sigmoidal and exponential models were fitted to the 

experimental data (control and treated cells). The BIC (Bayesian Information Criterion) of the 

fitted models assessed lower than -77 which confirms these models as good fits for the intensity 

profiles. Figure 3-9 shows the exponential (equation 3-6) and sigmoidal (equation 3-7) fit 

parameters as well as the initial slope of the intensity profile right after addition of the 

uncoupler/inhibitor. These nonlinear fits demonstrate that treating the cells with oxidizing agent 

(PCP 15µM), or reducing agents (ROT 15µM, AA 1µM, and KCN 20µM) results in significantly 

larger increase in the slope of the intensity profile (
−𝒃

𝑻
: 151.5±18.3, 56.6±1.8, 82.1±2.7, 56.5±4.8) 

at t=30 min when compared to that of the control cells (
𝒄𝒅

𝝉(𝟏+𝒅)𝟐
: 36.6±3.7). Presented values 

correspond to the initial time (t=30min) when the metabolic agents were added. To evaluate for 

consistency and reproducibility of the results, a total of 48 wells of PAECs were imaged, with n=6 

for each of the treated groups and the control. The slopes of the fitted models were calculated at 
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fit parameters initial slope 

agent 
 

a 
 

T 
 

b 
−𝒃

𝑻
 

PCP 5943.7±960.7 36±6.9 -5360.3±993.5 151.5±18.3 

ROT 8004.8±2860.9 143.2±58.2 -7791±2850.5 56.6±1.8 

AA 3671.5±445.6 40.9±4.6 -3421.3±459.3 82.1±2.7 

KCN 4429.4±607.1 77.6±11.6 -4224.1±620.1 56.5±4.8 
 

 
 

c 
 

τ 
 

d 
𝒄𝒅

𝝉(𝟏 + 𝒅)𝟐
 

CTRL 3216.7±247.4 12.7±0.3 5.2±0.3 36.6±3.7 
     

 

Figure 3-9: A: Dynamic fluorescence intensity profiles over time of cells in the presence or absence of the uncoupler (PCP) 

or the mitochondrial ETC complex inhibitors (ROT, AA, or KCN). Values are means ± SE; n=6 for each treatment group. 

The solid lines are exponential and sigmoidal fits to the mean values of the agent -treated and control data. B: The table 

shows the mean values of fit parameters and the initial slope of the exponential and sigmoidal fits at t = 30 min for each 

treatment group and control. F.A.U., fluorescence arbitrary unit; ROT, rotenone; AA, antimycin A; KCN, potassium 

cyanide; PCP, pentachlorophenol sodium salt. 
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the time of the administration of the agent for six FOVs of each group of the treated cells and 

control cells. Green curve of figure 3-9 corresponds to the average profile of the PCP experiments. 

This curve demonstrates the fastest and greatest increase of 4.90 ± 0.5 in the rate of the O2
•- 

production in the uncoupled mitochondria. The slopes of the intensity right after the addition of 

mitochondrial metabolic modulators (t=30min) were compared statistically in Figure 3-10, 

demonstrating significant changes between treated groups vs. control group. 

To demonstrate the capability of our method to localize the source of mitochondrial O2
•- 

under stress condition, a dual exposure experimental protocol was designed. This method was 

 

 
Figure 3-10: Summary bar graphs show the slope of the fluorescence intensity profiles right after the agent 

administration. Bar graphs show the means ± SE of the red fluorescence intensity slopes (t=30 min) for the five 

groups of cells. Addition of agents to PAECs (green, orange, red, and purple bars) resulted in significant (* 

p<0.05) increase in the rate of O2
•- production when compared to the non-treated (control) PAECs (blue bar). 

n=6/group.  
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(a) 

 

 

         
                        (b) 

 

Figure 3-11: a) Mean ± SE of fluorescent intensity profiles of O2
•- production over time in PAECs treated with PCP 

in addition with one of the ETC inhibitors; b) Summary bar graphs show mean ± SE of the slope ratio (SR, equation 

3-8) of the red fluorescent intensities (t=35min) for the four treatment groups. n=6  
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able to partition the O2
•- production from different parts of the ETC. After oxidizing the ETC with 

PCP, the ETC was reduced with the different ETC complex inhibitors to tease out the complexes 

responsible for the surge in O2
•- production when PCP fully oxidizes mitochondrial ETC. The 

curves in figure 3-11 represent the profiles of mean intensity in each time point for the 

corresponding groups. The green curve displays PCP-induced intensity profile compared to the 

orange, red, and purple curves, which demonstrate the effects of the addition of ROT, AA, and 

KCN to the PCP treated cells. The slope ratio (SR) was calculated for all four groups, with n=6 

for each group. Bar graphs in figure 3-11 show the means and SEM of the SR of the red 

fluorescence intensity for each of the four groups of cells. When compared to the addition of ROT 

and AA (orange and red bars, respectively), the addition of KCN to PCP-treated PAEC (purple 

bar) resulted in a significant reduction (p= 9.8026e-5), 62.7%, in the rate of increase of the 

fluorescence intensity as compared to fluorescence intensity of PAEC treated with PCP alone 

(green bar). This result shows that only KCN was able to partially reverse the effect of the 

uncoupling agent on the O2
•- production. 

We have also found further evidence that the surge in mitochondrial O2
•- production by 

PCP is reversible by mitochondrial-targeted ROS scavenger, MitoTempol. The dual-agent 

exposure protocol is helpful in demonstrating this reversible effect while monitoring the real-time 

oxidation of MitoSOX, using uncoupler (positive control) as a first agent and Mito-tempol 

(negative control) as a second agent. Figure 3-12 shows fluorescence intensity profiles in untreated 

cells (control; blue curve) and PCP treated cells in the absence and presence of the mitochondrial 

targeted scavenger MitoTempol over time (green and red curves, respectively). As observed 

previously, adding PCP at t=30 min markedly increased O2
•- production rate (compare green 

profile with blue curve); adding MitoTempol at t=35 min significantly decreased the rate of O2
•- 
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production (red profile vs. green curve), and by t=75 min, the PCP-induced O2
•- production was 

completely abolished, reaching O2
•- levels similar to the control cells (blue curve). The pink profile 

in this panel shows that using MitoTempol as a negative control decreased the O2
•- production rate 

when compared with the control cells (blue profile). Comparison of the pink and blue profiles 

confirms that fluorescence measurement of MitoSOX oxidation reflects the dynamic changes in 

mitochondrial O2
•- production in real-time. If MitoSOX is mitochondrial specific, then Tempol, a 

non-mitochondrial targeted ROS scavenger, affects the MitoSOX fluorescence less when 

 

Figure 3-12:  Representative fluorescent intensity profiles in untreated cells (control) and PCP treated cells in the 

absence and presence of the superoxide scavenger MitoTempol over time. The arrows indicate the time MitoSOX 

(10 minutes), PCP (30 minutes), and MitoTempol (35 minutes) were added to the cells. F.A.U.,fluorescence 

arbitrary unit; this panel shows that MitoTempol reversed PCP-induced O2
•- production. 
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compared with MitoTempol. Figure 3-13 shows fluorescence intensity profiles of the untreated 

cells (blue curve) and the cells treated with Tempol (red curve) and MitoTempol (pink curve). 

These data demonstrate that the addition of MitoTempol reduced the O2
•- levels, at a faster rate 

than Tempol. This result further confirms that MitoSOX fluorescence following oxidation by O2
•- 

is correlated with mitochondrial O2
•-  production. We also observed that apocynin, NOx inhibitor, 

did not alter the trajectory of the mitochondrial ROS production (data not shown), verifying that 

the primary/major source of ROS during metabolic modulation in the PAECs is mitochondria. 

 

 
Figure 3-13: Representative dynamic fluorescence intensity profiles over time in the untreated cells (blue curve) 

and the treated cells treated with Tempol (red curve) and MitoTempol (pink curve). The arrows indicate the time 

MitoSOX (10 minutes), and MitoTempol (30 minutes) were added to the cells. F.A.U.,fluorescence arbitrary 

unit; 
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 ROS production in NFL versus HTFL PAECs under metabolic stress 

To investigates the hypothesis that pulmonary hypertension is associated with changes in 

mitochondrial superoxide production, NFL and HTFL PAECs were examined. The dynamic of the 

mitochondrial superoxide production in these two groups of PAECs was monitored over time using 

time-lapse microscopy and the experimental protocol described in section 3.3.3. After capturing 

the baseline images of the cells for 10 minutes, cells were stained with Mito-SOX reagent (0.5µM). 

To modulate the mitochondrial superoxide level, metabolic perturbation was induced by 

administration of 20µM potassium cyanide (KCN). The (red) fluorescence intensity profile of the 

cells was normalized to baseline and then background subtracted to monitor the dynamics of 

superoxide level over time and after inducing chain perturbation in mitochondria. Changes in the 

slope of the fluorescence intensity profile (t=30 min) in the red channel indicated the production 

rate of the superoxide before and after treating the cells with KCN (20µM). A total of 24 wells of 

PAECs were imaged including n=6 for each non-treated and KCN treated group. 

Figure 3-14 shows the bar graphs illustrating the changes of superoxide production rate due 

to ETC inhibition by KCN for both NFL and HTFL PAECs. This figure illustrates that production 

of the superoxide in HTFL non-treated cells is 1.2 ± 0.2 faster than NFL non-treated cells and 

addition of KCN induced a significant increase of 1.9 ± 0.6 in the superoxide production rate of 

the HTFL PAECs as compared to the NFL FPAECs. Please note that the addition of KCN doubled 

(2 ± 0.8) and tripled (2.9 ± 0.7) the superoxide production rate in NFL cells (blue bars) and HTFL 

cells (red bars), respectively. Compared to NFL PAECs, addition of KCN induced instantly a 

significant increase of 1.9 ± 0.6 in the superoxide production rate of the HTFL PAECs.   
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 ROS production in NFL PAECs under metabolic and oxygen stress 

The effect of the oxygen tension on the production of superoxide in mitochondria of PAECs were 

compared under two stress conditions including hypoxia plus uncoupling (by PCP) or ischemia 

reperfusion (IR; hypoxia followed by normoxia) plus uncoupling. The preliminary result is 

presented in figure 3-15. Hypoxic PAECs showed 2.7± 0.2 times higher superoxide production 

rate in uncoupled ETC than normal ETC. However, the production rate for the PCP-treated cells 

in the IR group increased by 4.4± 0.7 times compared to non-treated cells in this group. This result 

shows a wider dynamic range of the superoxide production in IR group versus hypoxia group. 

  
  

Figure 3-14: Bar graph plot showing the means and standard errors of the slope ratio of the red fluorescence intensity 

profile (t=30 min) for each group. Slope ratio is translated to change in the superoxide production rate. Blue bars 

correspond to NFL cells and red bars represent the HTFL cells. n=6/group. 
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Figure 3-15: Bar graph plot showing the means and standard errors of the slope ratio of the red fluorescence intensity 

profile at t=30 min for hypoxia and IR groups. Slope ratio is translated to change in the superoxide production rate. 

Red bars represent the PCP-treated cells and blue bars correspond to non-treated cells. n=4/group. 

3.2.8 Discussion and conclusion on lung cells in vitro studies 

This study demonstrated the utility of fluorescent time-lapse microscopy for evaluating 

dynamic O2•- production along the ETC. Oxidative stress and mitochondrial dysfunction can lead 

to apoptotic cell death early in the pathology of different diseases [260-264] including pulmonary 

injury [107-110, 167, 265-270]. Therefore, the development of methods to assess the discrete sites 

for mitochondrial O2
•- generation could help in recognizing the critical role of the organelle in the 

pathological generation of ROS in diseases and to understand the cellular responses to ROS 

mediated injuries.  

I designed experiments to measure the changes in mitochondrial O2
•- levels and rate of 

production over time with disrupted ETC function, to mimic pathological ROS emission 

(production>scavenging). MitoSOX Red was used as a O2
•- indicator, which has been validated by 

others [243, 246, 247, 249, 251, 252, 271-274] for selective detection of mitochondrial O2
•- 
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production in endothelial cells [246, 247, 253]. Inline loading of cells with MitoSOX and real-time 

monitoring of mitochondrial O2
•- production have not been previously reported. 

The measurement of various ROS is dependent on suitable techniques and is impeded by 

lack of a sensitive and specific assay [239]. MitoSOX is a sensitive and specific fluorescent marker 

for mitochondrial O2
•- and useful in the evaluation of dynamics of O2

•- production. MitoSOX, a 

derivative of DHE, has the TPP-tag fluorescence that selectively targets and enters mitochondria 

in response to the strong m [239]. Indeed, the strong negative m makes the affinity and 

accumulation of the probe in mitochondria stronger than the cytosol [256]. This attribute makes 

the probe a suitable tool to assess mitochondrial-derived O2
•- production in various live cells [242], 

including PAECs. The ETC drives electrons from reduced coenzymes (NADH(H+) and FADH2) 

to O2, which undergoes the complete reduction to H2O catalyzed by complex IV. During the 

electron transfer, some electrons escape from the ETC at discrete sites to generate O2
•- [239]. O2

•- 

production is favored in general by high m and large NADH(H+), or when electron transfer is 

impeded by alteration in the ETC complexes [240, 275]. In this scenario, a decrease in ROS 

production would portend m depolarization due to enhanced electron transfer, as observed with 

uncoupling agents. Paradoxically, though, conditions have been reported in which mitochondrial 

uncoupling and m dissipation are associated with increased production of ROS [276]. This 

observation is consistent with our results which show PCP, an uncoupling agent, increases O2
•- 

production (figures 3-5). According to the proposed model of redox-optimized ROS balance by 

Aon et al. [277], this apparent paradox might be explained by the hypothesis that physiological 

signaling ROS occurs within an optimized redox state, and oxidative stress can happen at the 

extreme of either reduction or oxidation. Consistent with this hypothesis, our results demonstrated 

higher O2
•- levels and rates of production in both the reduced and oxidized ETC. The elevated level 
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of ROS initially overwhelms the scavenging potential of mitochondria and leads to excess ROS 

(oxidative stress). 

Inhibitors of complex I are useful for determining the source of ROS [239]. The ETC is 

fully reduced when complex I is blocked with rotenone. Complex I, a transmembrane protein, 

oxidizes NADH and rotenone inhibits the electron transfer from Fe-S centers in the complex to 

coenzyme ubiquinone (CoQ), rendering complex I incapable of transferring electrons to CoQ 

[239]. The highly reduced redox state creates a buildup of electrons within the mitochondrial 

matrix, leading to forced electron leak that reduces O2 to O2
•- anions; thus making complex I a 

major site of O2
•- production in the presence of rotenone [267, 269, 278]. This observation is 

consistent with our results that show (figure 3-9) an increase in the intensity of red fluorescence 

emitted from mitochondria after addition of rotenone. Increase in the slope of intensity profile by 

a factor of 1.83 ± 0.05 is translated to rotenone-induced increase in the rate of O2
•- production from 

complex I. It is worth noting that complex I is probably the main source of mitochondrial ROS 

under most physiologic conditions.  

Complex III is believed to contain a Q cycle with the inner Q (Qi) and outer Q (Qo) pool 

of ubiquinone (Q) oriented toward the matrix (i) and the mitochondrial inter-membrane space (o) 

[239]. Specifically, complex III funnels electrons from the CoQ pool to cytochrome c. It has been 

regarded as a source of ROS production in mitochondria, but whether the ROS produced is relevant 

physiologically or pathophysiologically [242, 243, 279, 280] remains controversial [239]. When 

supplied with CoQH2 and when the Qi site is inhibited by antimycin, complex III produces large 

amounts of O2
•- from the reaction of O2 with an ubisemiquinone bound to the Qo site [242, 243, 

279-284]. The red curve in Figure 4 shows the apparent increase by a factor of 2.66 ± 0.08 in the 

rate of O2
•- generation initiated by addition of antimycin A. KCN is an irreversible inhibitor of the 
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enzyme cytochrome c oxidase, complex IV. The binding of cyanide to cytochrome c prevents 

transfer of electrons from the enzyme to O2, creating a buildup of electrons within the inter-

membrane space. As a result, inhibiting complex IV increases ROS production and decreases O2 

consumption and cellular respiration (hypoxia). The purple curve of Figure 4 corresponds with the 

average profile of KCN experiments. This profile shows a 1.83 ± 0.14 increase in the rate of O2
•- 

production by KCN compared to the control (untreated cells). These data show that inhibition of 

O2 binding with complex-IV leads to both electron backup and availability of molecular O2 to be 

reduced to O2
•-, without the generation of H2O. 

Pentachlorophenol (PCP) is a powerful uncoupler of oxidative phosphorylation and also 

induces oxidative stress to cause mitochondrial damage [285-289]. PCP dissipates the proton 

gradient by consuming the proton motive force via increased proton leak back into the matrix. A 

recent study reported that PCP oxidizes the ETC and increase the activity of complexes I and II 

[290], leading to the production of more protons and transfer of more electrons along the ETC. 

Lack of proton gradient for phosphorylation activates a mechanism to compensate for the 

uncoupling effect by increasing proton pumping in an attempt to reestablish the proton gradient. 

Paradoxically, the increase in activity of the complexes in the uncoupled chain increases electron 

transfer along the ETC, and as a result, increases electron leak to O2 leading to O2
•- production 

[277, 291-294]. This notion is supported by our observation that uncoupling respiration with PCP 

led to the fastest and greatest increase (figure 3-9) in the mitochondrial O2
•- production. The finding 

also suggests that the increase protonophoric effect of FCCP (electron leak) leads to a feed-forward 

mechanism that exacerbates ROS production. 
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Administration of the metabolic stressor/modulators (PCP, KCN, AA, or ROT) in PAECs 

induces two phases of the O2
•- production (figures 3-8 and 3-9). Initial O2

•- formation increases 

markedly right after addition of the metabolic agents (surge phase) but later settles to a state in 

which the O2
•- production rate (the slope of the intensity profile) decreases and eventually saturates 

(steady-state phase). This steady-state phase is consistent with the view that increased O2
•- level 

induces MnSOD activity as a negative feedback mechanism to remove the excess O2
•- and 

therefore decrease the rate of O2
•- levels over time [295] as compared to the early phase of the 

stress condition. The fast dismutation of O2
•- by MnSOD also enhances this saturating effect. The 

oxidation of MitoSOX is 500 times slower than the rate of O2
•- scavenging by SOD [243]. 

Therefore, less O2
•- is available for oxidizing MitoSOX leading to a decrease in the rate of the O2

•- 

at the later stage of the imposed stress conditions. 

Figure 3-9 also represents the nonlinear fitted models to the intensity profiles of the treated 

and non- treated PAECs. These nonlinear fits show that chain uncoupling and inhibiting involves 

the exponential up-regulation of the superoxide level, while the non-treated cells demonstrate 

sigmoidal profile. Having these nonlinear fits of the intensity profiles allows for quantifying 

important parameters of O2
•- dynamics including O2

•- production rate, which is the slope of the fit 

in each time point and the O2
•- level that is proportional to the intensity value of the fit at each time 

point. Moreover, nonlinear fits provide the time constant (T; the time point when the intensity level 

rises to 65% of the ultimate value, b) of the exponential up-regulation of the mitochondrial O2
•-. 

We also used the slope of the fit exactly after addition of the agent to quantify the initiation of the 

O2
•- production after each treatment. The quantified parameters of the nonlinear fits (bottom panel 

of Figure 3-9) suggest that uncoupling of the mitochondrial ETC by PCP leads to the smallest time 

constant or the fastest rate of O2
•- production and highest levels of O2

•- accumulation compared to 
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the inhibition of the ETC. Shorter time constant, and therefore significantly higher slope of the 

exponential fit (
−𝑏

𝑇
) of the PCP-treated cells is an evidence for faster O2

•- generation in the 

uncoupled chain. The parameter b of exponential fit, which represents the final levels of the 

accumulated O2
•- is the evidence for the higher O2

•- levels in PAECs with uncoupled chain, 

consistent with the studies of Aon et al. [277]. Among the inhibitors (Figure 3-10), AA resulted in 

faster O2
•- production in the early phase of the inhibition of complex III compared to the inhibition 

of mitochondrial complexes I and IV by ROT and KCN, respectively.  

The rate of O2
•- productions was also assessed in dual-agent experiments to identify the 

complexes that mediate the uncoupling effect of ETC on O2
•- production and scavenging potential 

of mitochondrial-targeted (MitoTempol) and non-mitochondrial-targeted (Tempol) scavengers. 

O2
•- productions from mitochondria are primarily from complexes (I, III, and IV), distinguished 

by the use of specific blockers (see Materials and Methods) of the ETC complexes.  Of the three 

complexes targeted, only complex IV blocker, KCN, significantly decreased the rate of O2
•- 

production induced by PCP. This suggests strongly that the uncoupling effect of PCP on O2
•- 

production is related to increased electron leak to final acceptor, O2, without generation of H2O. 

Thus, in the uncoupled mitochondria, the main source for O2
•- production is probably associated 

with the oxidation of mitochondria via complex IV. Therefore, a notable observation is that in the 

PAECs complex IV is a major site for O2
•- production when mitochondria are uncoupled.  

Consistent with the redox-optimized ROS balance hypothesis, our method has the potential 

to model redox as ROS modulator and confirm the important role that redox modulation plays in 

controlling ROS production and potentially, ROS-mediated mitochondrial dysfunction and 

concomitant cellular injury. The single agent experiments showed that reduction (inhibition) or 

oxidation (uncoupling) of ETC leads to exponential increase in ROS production. Therefore, any 
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shift toward oxidation or reduction leads to an increase in the ROS production rate. As equation 

3-9 shows, this ROS production is proportional to the difference of the redox state (R) from its 

optimal value (Ropt).  

            ROS ~ |R-Ropt|                                                           (3-9) 

In addition, the dual-agent experiments demonstrated the shift in the redox state towards 

oxidation by PCP, and the reversal of the O2
•- by KCN suggests that the redox optimized balance 

could be modulated by targeting specific ETC complexes. In this scenario, the redox state (R) of 

the uncoupled ETC becomes more reduced after adding KCN and moves toward optimal redox 

state and attenuates ROS production.  

Since mitochondria are the major source of O2
•- production during the uncoupling of 

respiration with PCP, we also examined whether the initial surge in O2
•- production was amenable 

to the mitochondria-targeted ROS scavenger, MitoTempol and the cytosolic counterpart Tempol. 

Mito-Tempol, unlike Tempol, is hitched to the cationic agent TPP+, which pulls the scavenger 

into mitochondria where it acts as an effective SOD mimetic. Our results (figures 3-12 and 3-13) 

confirm that the initial surge in mitochondrial ROS production following uncoupling of respiration 

with PCP is primarily mediated by the deranged electron transfer in the ETC. This is also consistent 

with the observation that the complex IV might be the source of electron leak that contributes to 

the surge in O2
•- generation in the initial phase, i.e. when production exceeds the scavenging 

potential of MnSOD. We further verified that the primary source of the O2
•- anion during 

simulation of metabolic stress is from the mitochondria, because the Nox inhibitor, apocynin, did 

not alter the cellular ROS production (data not shown).     

The dynamics of superoxide production rate was quantified and compared in inhibited 

PAECs isolated from Persistent Pulmonary Hypertensive lamb and normal lamb. Our result 
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demonstrated that administration of the KCN significantly doubled and tripled the superoxide 

production rate in NFL and HTFL PAECs, respectively. Compared to NFL PAECs, addition of 

KCN induced significantly greater increase (double) in the superoxide production rate of the HTFL 

PAECs [31]. This result is consistent with decreased manganese superoxide dismutase (MnSOD) 

expression and activity contribute to the endothelial dysfunction observed in PPHN [116]. Our 

results suggest that pulmonary hypertension is associated with lower basal superoxide level and 

greater mitochondrial superoxide production rate. 

Hypoxia as a severe oxygen stress causes irreversible injury to lung cells. However, under 

stress condition due to other injuries or metabolic stressor, hypoxia can decrease the severity of 

the original injury [111]. This effect was examined by quantifying O2
•- production rate in hypoxic 

PAECs treated with PCP. Our results revealed that hypoxic cells have smaller dynamic range of 

the superoxide generation when treated with PCP. While treating with PCP leads to an increase of 

4.9 ± 0.5 times greater O2
•- production rate in normal cells, it increases this rate by a factor of 2.7± 

0.2 in hypoxic cells. This result indicates 45% decrease in the O2
•- production rate of uncoupled 

PAECs under hypoxic condition when compared to normal oxygen condition. The decrease in O2
•- 

production rate suggests a slower rate of electron transfer along the ETC and hence a slower 

activity of uncoupled chain in hypoxic condition which leads to a less oxidized chain. Decreased 

activity of the uncoupled ETC in hypoxic condition demonstrates that lower concentration of 

ambient oxygen decreases the severity of the metabolic stress and mitochondrial dysfunction. This 

happens through a compensating mechanism which regulate O2
•- production rate leading to a more 

resistive state to metabolic stress and injury. 

The IR model leads to more enhanced O2
•- production (4.4 ± 0.7) compared to hypoxia 

(2.7± 0.2) leading to less resistive state in response to metabolic stress condition, uncoupling.  This 
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result revealed that reoxygenation after hypoxia oxidizes ETC and thus the O2
•- production rate 

increases to the O2
•- production rate of uncoupled ETC (4.9 ± 0.5). This is consistent with previous 

results which demonstrated an oxidized ETC in lungs sustained IR [296, 297]. This results also 

confirms that IR is an injury model leading to oxidative stress and mitochondrial dysfunction. 

Limitations: We relied on the concept that MitoSOX is oxidized by O2
•- and the oxidation product 

becomes highly fluorescent upon subsequent binding to mitochondrial DNA over time [243]. It is 

possible that as a cationic molecule, MitoSOX uptake into mitochondria can also contribute to 

direct ROS production by depolarizing m. However, the ROS generated in this case is minute 

when compared to the ROS produced from modulating ETC complexes. Using lower 

concentration of the MitoSOX in nano-molar range provides a longer time interval for the study 

and decreases the effect of the MitoSOX on the Mitochondria.  

It should also be noted that MitoSOX uptake increases 10 fold for every 60mv increase in 

membrane potential [243, 298]. Since m decreases in the presence of uncoupler [299, 300] and 

ETC inhibitors [299, 301], the decrease in m could impede the uptake of MitoSOX. Therefore, 

the fluorescence intensities presented could be under-estimated for the levels of the ROS in the 

inhibited and uncoupled chain. 

Interaction of the O2
•- and MitoSOX is also affected by pharmacokinetics of MitoSOX and 

its binding properties. The initial phase of the intensity profile shows a greatly enhanced 

fluorescence due to binding of the oxidized MitoSOX to mitochondrial DNA. In the steady state 

phase of the fluorescence recording, the saturation effect of the signal profile is possibly due to 

binding of oxidized MitoSOX to nuclei, which results in apparent nuclear and nucleolar 

localization (Figure 3A). Due to nuclei binding of MitoSOX and thus, the subsequent diminished 
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mitochondrial uptake, the fluorescence intensity of the mitochondrial compartment become 

saturated and after a while reaches the final level.  

The mitochondria-derived O2
•- detection can be also further improved by high resolution 3D 

imaging, segmenting the mitochondria of the cells in the 3D red fluorescent images, and 

quantifying the intensity profile of the mitochondrial compartment. 

3.3 Summary  

In closing, fluorescence microscopy was used to quantify the changes of (1) vascular 

morphologies in retina and (2) cellular ROS in lung cells in the early phase of their response to 

ROS-mediated injuries. In the first approach, vascular network of the mice retina including 

vascular area, acellular capillaries, vascular fractal dimension, and more specifically vascular cells, 

were assessed on the fixed microscope slides. A multi-parameter image processing tool was 

developed to quantify the subtle changes in retinal vascular network due to injury and oxidative 

stress. The developed program was also able to classify the injured and healthy retinas. In the 

second approach, a new experimental protocol was established to study oxidative stress in live 

lung cells. Part of the image processing program developed for retina cell studies was used to 

segment the lung cells from fluorescence microscopic images, which shows the capabilities of the 

developed programs and can also be applied to other applications. The image processing tool was 

further developed to model and quantify the cellular response of the lung cells to the injuries and 

stress conditions. The details of both approaches were explained and the results were discussed. 
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Chapter 4 

Ex vivo studies of lung in animal model 
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4. Ex vivo studies of lung in animal model 

Pulmonary diseases are the third leading cause of death in America [302]. A wide range of 

lung diseases affect the structure of the alveoli, leading to deterioration of the lung function. For 

instance, pulmonary edema, hyperoxia, pulmonary fibrosis, restrictive and obstructive pulmonary 

disease are known by the progressive destruction of alveolar lining layer and wall. Chronic 

obstructive pulmonary disease (COPD) is defined by the progressive destruction of alveolar walls 

leading to permanently dilated alveoli. In contrast, pulmonary fibrosis is characterized by causing 

stiffening and, thus, impeding alveolar dilation [303]. Prolonged hyperoxia also causes impaired 

alveolization leading to alveolar dilation as well as a decrease in the number of alveoli [304]. 

Moreover, hypoxia and alveolar edema activate a hyperventilation mechanism to compensate for 

the lack of oxygen. Prolonged hypoxia and edema cause impaired alveoli. Therefore, evaluation 

of the structural changes in lung tissue, and particularly alveolar sacs and wall, provides diagnostic 

information about these pulmonary diseases and the severity of the lung injury sustained.  

The recognition of the crucial role of the alveolar structure dynamics rekindled significant 

interest in the development of methods to image and assess the alveolar wall damage in the lung 

and the severity of the disease. A developed spectral domain - optical coherence tomography (SD-

OCT) device was utilized to image the underlying structure of lung tissue including alveoli in real-

time fashion. Furthermore, an automated segmentation and quantification algorithm for the 

quantification of alveoli structures in optical coherence tomography images was implemented.  
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Our implemented software is able to provide 3D visualizations of the alveolar sacs and to 

quantify the changes in alveoli compliance in the lung injury models. Our method allows for the 

evaluation of alveoli compliance on lung tissue acquired at different levels of expansion. This 

method has the potential to provide structural remodeling caused by a range of respiratory diseases, 

including pulmonary alveolar edema, chronic obstructive pulmonary disease and pulmonary 

fibrosis.  

This chapter will now go through the methods, experimental setup, data analysis and results 

of the lung studies performed for this project. 

4.1. Tissue Preparation 

4.1.1. Rat lungs 

Lungs were harvested from anesthetized rats weighing 300 to 350g and were perfused as 

previously reported [305]. Each rat was anesthetized with pentobarbital sodium (40 mg/kg body 

wt. intraperitoneal), after which the chest was opened. Heparin (0.7 IU/g body wt.) was injected 

into the right ventricle. Cannulas were placed in the pulmonary artery and the trachea, and the 

pulmonary venous outflow was accessed via a cannula in the left atrium. The lungs were removed 

from the chest and attached to a ventilation and perfusion system. The perfusate was Krebs-Ringer 

bicarbonate solution containing (in mM) 4.7 KCl, 2.51 CaCl2, 1.19 MgSO4, 2.5 KH2PO4, 118 NaCl, 

25 NaHCO3, 5.5 glucose, and 3% bovine serum albumin (BSA) [306]. The ventilation gas mixture 

was 15% O2, 6% CO2, balance N2. The perfusate was pumped (at 10 mL/min) through the lung 

until it was clear of blood, then SD-OCT scans and spectral signal acquisition were performed 

under resting conditions. 
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4.1.2. Pulmonary alveolar edema 

The primary function of the lungs is the diffusion of oxygen into and the release of carbon 

dioxide from the bloodstream. Air-filled sacs in the lung, called alveoli, facilitate this exchange of 

gases. Alveolar edema which is a pulmonary edema in the alveoli can be developed by hypoxemia 

(hypoxia), and dyspnea in different ways. In 1974, Webb and Tierney demonstrated for the first 

time that mechanical ventilation could generate lung lesions in intact animals [307]. Rats ventilated 

with peak inspiratory pressures of 30 or 45 cm H2O (22-33 torr) developed pulmonary edema 

within 60 and 20 min, respectively [308]. This method was used to make the normal rat lung, 

edemic. After compliance experiment was performed on the normal rat, the lung was ventilated 

with peak inspiratory pressure of 22 torr for 60 min and developed alveolar edema. Then, the 

compliance experiment was repeated on the edemic lung. 

4.2. Pulmonary compliance experiment  

Pulmonary compliance is a measure of the ability of the lung to stretch, and it is assessed 

by quantifying the changes in lung volume due to continuous increase and decrease in the airway 

pressure. The pressure-volume (PL-VL) curve of an excised lung inflated-deflated between 

 

Figure 4-1: Experimental setup for the compliance experiments 
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minimum lung volume and total lung capacity is characterized by a nonlinear relationship and is 

typified by a large hysteretic area indicating an irreversible energy loss. The mechanical behavior 

of excised lungs is associated with an irreversible behavior linked to structural alterations in the 

lung tissue. In order to see the dynamic change of structure, SD-OCT data were collected from 

the surface of the buffer perfused and ventilated rat lungs at different ventilator pressures from 0 

to 11 torr. For the deflation, expiration pressure was decreased from 11 torr to zero. Figure 4-1 

shows the setup for the compliance experiments. Controlling the scanner, collecting lung data, 

and ventilator pressure are managed through a software. The details of the SD-OCT system are 

described as follows. 

4.3. OCT instrument 

A spectral-domain optical coherence tomography (SD-OCT) system was designed and 

implemented by our collaborator in the BIST lab (of UW-Milwaukee) to monitor microvasculature 

activity which incorporates rapid hemodynamic, fluorescent and metabolic imaging. The system 

was optimized for real-time imaging to monitor hemodynamic activity. The enhanced capability 

of the system can provide imaging rates of 80 (2D) images (1000 × 512 pixels) per second. This 

high-speed tool will allow for real-time microvasculature monitoring at video rates. Additional 

fluorescent image modalities can coordinate fluorescent signals with hemodynamic reactions.  

The optical setup of the SD-OCT system (figure 4-2) used for alveolar imaging is based on 

a low coherent light source, which is a broadband near-infrared super-luminescent diode (SLD) 

with a 200-nm-wide spectrum centered at 1300 nm. Output power of SLD is coupled into a single-

mode optical fiber. After passing a fiber coupler joining the pathways to the SLD and to the 

spectrometer, the light is guided to a scanner. In the scanner, the light is collimated to a free space 
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beam and deflected from a set of galvanometer mirrors providing fast beam deflection. The 

deflected beam is transmitted through a dichroic mirror and then focused on the sample by an 

objective lens. The other arm serves as the reference pathway for the OCT interferometer. The 

light reflected by scattering structures within the probe, together with the reference light, form the 

interference pattern relative to position and is focused back into one common fiber and guided via 

the fiber coupler into the grating spectrometer, where the dispersed light is focused on a InGaAs 

line detector with a width of 1024 pixels. The resulting interference spectrum is read out to a 

personal computer at a maximum rate of 91 KHz. To control all of the hardware used, as well as 

data acquisition of OCT spectra, and display them in real time, a LabVIEW program has been 

designed.  

 

 

 

Figure 4-2: Schematic of the spectral domain OCT 
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4.4. Imaging and image processing 

The SD-OCT system was utilized to capture real-time cross sectional images of lung and, 

thus, alveolar structure in a ventilated and buffer perfused isolated rat lung. The ability of the OCT 

system to provide depth information makes it a promising tool for disease diagnosis and tumor 

investigation. To our knowledge, there has been no report so far on OCT imaging of alveolar 

compliance dynamic in rat lungs. Using image processing techniques, the structural changes in the 

alveoli and the compliance were quantified and monitored. 

4.4.1.   Imaging and image acquisition  

Figure 4-3 shows perfused and ventilated lungs (both normal and edemic rat lungs), which 

were scanned under resting condition by the described SD-OCT system. The raw data, which is 

the spectrum of the interference patterns relative to different lateral positions, were collected from 

the surface of the fixated lung and stacked together to produce a 2D cross-sectional image.  

For lung compliance experiments, SD-OCT data collected from the surface of the normal 

and edemic rat lungs ventilated at different pressures from 0 to 11 torr. A stack of 2D cross 

sectional images with field of view of 3 mm × 3 mm (figure 4-4a) were obtained by the SD-OCT 

    

Figure 4-3: Images of the scanner head during ex-vivo experiments on the normal (left) and edemic on edge 

(middle), and severe edemic (right) lungs attached to the Langendorff perfusion system 
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system. Due to curvature of the lung surface, some part of this image is in focus and some parts 

are out of focus. Therefore, only in-focus field of view of this image (figure 4-4b) was selected for 

the processing. Then, a processing algorithm was applied to segment the contour of the alveolar 

sacs (highlighted with green lines in figure 4-4c) and to extract the whole information relevant to 

these contours. 

 

      (a)                                               (b)               (c) 

Figure 4-4: Extraction of the alveolar sacs from the raw image produced by the SD-OCT system. a) A 2D cross 

sectional OCT image at the depth of 63μm from the surface of lung. The white rectangle shows the area of which is 

in focus and segmentation was applied, b) selected area after contrast enhancing, c) detection of alveolar sacs on the 

selected area. 

4.4.2.  Image processing  

3D visualizations: To present 3D visualizations of the lung structures, first the 2D cross 

sectional images were reconstructed through a multi-step process. Acquired raw data transformed 

from the frequency domain (the interference pattern) to time domain to reconstruct an A-scan. 

After background subtraction, noise removal, and contrast enhancement, A-scans obtained from 

different lateral positions are stacked together to produce a 2D cross-sectional image. Surface 

scans performed on each spot (with field of view of 3 mm × 3 mm) of a rat lung at each ventilation 
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pressure point resulted in a stack of 2D cross sectional images. Then, a 3D image was rendered 

from the preprocessed stack of images. 

  

                 (a)                                                                                (b) 

Figure 4-5: 3D reconstructed image of the lung alveoli. a) alveolar sacs (bottom) view; b) lung surface (top) view 

Figure 4-5 shows 3D rendered visualization of the reconstructed images acquired from 

surface scanning of a normal rat lung. These visualizations show, to our knowledge, the first 3D 

volume renderings of rat lung structures acquired with an OCT system. In these visualizations, the 

structures of the alveolar wall and sacs were clearly presented (figure 4-5a).   

Alveoli segmentation: A segmentation technique was developed to detect the contour of 

the alveolar sacs in the 2D cross sectional images. Segmented contours provide the structural 

dynamic information, which were quantified for both normal and edemic lungs.  
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The segmentation program utilizes the 2D cross sectional images to detect the alveolar sacs 

in the images. The location and the border of the alveoli in each image was determined using the 

segmentation algorithm shown in figure 4-6 as a schematic, and figure 4-7 as example pictures.  

                                         

Figure 4-6: Flowchart of the alveoli segmentation procedure. 

 

The segmentation algorithm shown in figure 4-6 is a marker based watershed technique 

[55]. Since the objective of the present segmentation algorithm is to find the border contours of 

the alveolar sacs, we defined a marker for alveolar sacs as foreground and a marker for the alveolar 

walls as background. The gradient of the images was calculated and the magnitude of this gradient 



 

 

121 

 

considered as the segmentation function. To avoid over-segmentation problems [309, 310], the 

segmentation function was modified based on the foreground and background markers. To 

enhance the contrast of the circular sacs (foreground markers), a bilevel LOG filter [311] was 

applied (using the center and surround method). The background markers (alveolar walls) were 

computed by applying distance transform and then watershed detection on the resultant binary 

mask of the previous stage. The gradient magnitude of image was then modified so that only its 

regional minima occurred in the foreground and background markers' pixels. At this stage, the 

watershed transform [312] of the modified segmentation function finds and uses the markers as 

the "catchment basins" and the border of the foreground markers as "watershed ridge lines", 

resulting in a binary mask containing the borders of the alveolar sacs.  

It should be noted that defining background marker is necessary. Otherwise, watershed 

transform results in segmenting some part of the alveolar wall and background of the image as 

alveoli sacs. It is also important to define the background markers such that they are not too close 

to the edges of the foreground markers that we are trying to segment. To avoid this problem, the 

background was thinned by computing the "skeleton by influence zones", or SKIZ [313], of the 

foreground. This can be done by computing the watershed transform of the distance transform 

(DT) of the foreground. DT transforms each pixel value into the distance to the nearest alveolus. 

Therefore, as figure 4-7d shows the brightest pixel in the resulting image show the farthest pixel 

from the nearest alveoli. Watershed in this case detects the ridge lines which defines areas with 

the maximal distance to the nearest alveoli. Therefore, the resulting background markers are the 

lines that separate the image into individual regions, while maintaining the maximum distance 

from the nearest alveoli (figure 4-7e). 
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Large variations of intensity within and between the alveolar walls make accurate segmentation 

difficult. This challenge is further increased by the need for high-speed operation for the real time 

monitoring. Enhancing the object-background contrast by using a fast and effective filter helps to 

overcome this challenge. As mentioned earlier, a bilevel LOG filter was implemented in this study 

to sharpen the edges and enhance the contrast of the circular objects of the images (alveolar sacs). 

The filter is specified by four parameters H1, H2, R1, and R2: 

                              f (r) =  {

H1,        |𝑟| ≤ R1

H2,       R1 < |𝑟|

0            |𝑟| > R2

≤ R2                      
(4-1) 

   
(a)                                               (b)                                                   (c) 

   
(d)                                               (e)                                                   (f) 

Figure 4-7: Output of the segmentation algorithm in different stages. a) original image; b) filtered image by bilevel 

LOG filter; c) foreground markers: binary mask resulted from Otsu thresholding; d) distance transform of the binary 

mask after morphological reconstruction; e) background markers obtained by watershed transform of stage d; f) 

segmented alveolar sacs in yellow contours.  
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Figure 4-8: (a) Bilevel LOG filter in blue color (b) top view of filter C) two different side views of the implemented 

filter. 

Different views of this filter have been shown in figure 4-8. The size of the filter, which is 

defined by R1 and R2, was computed based on the minimum and maximum size of the alveolar 

sacs (objects of interest). H1 and H2 are the amplitude of the filter in the corresponding regions. 

The LOG filter is an orientation-independent operator and is optimal for edge detection but not 

computationally efficient, especially for high throughput assessments. Bilevel LOG filter 

approximates LOG filter to only two levels (H1 = +10, and H2 = -10) and improves the speed of 

the filter [311], making it more useful for our application. This filter emphasizes circular objects 
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by leaving pixels in a central circle |𝑟| ≤ R1  magnified by a factor of H1, while reversing pixels 

outside of the central circle R1 < |𝑟| ≤ R2 by a factor of H2 to create a high contrast around 

circular objects in the image.  

 The performance of the alveolus segmentation algorithm depends on the choice of several 

parameters, which should be tuned to obtain optimal performance of the algorithm. The first of 

these parameters are R1 and R2, which define the size of the filter used to improve the alveolus 

contrast. Initialization of these parameters was determined by a prior estimate based on the size of 

the alveoli in a set of manually segmented (ground truth) images. Another parameter is the 

threshold level, which was used to convert the image intensity to a binary mask containing the 

alveolar sacs. The initial value for the threshold level was computed based on Otsu's method [314], 

which selects the threshold to minimize the intraclass variance of the thresholded black and white 

pixels. After initialization, these parameters will be selected in an interval around the initial values 

so that the segmentation error decreases. The error in the alveolus count was defined as the 

criterion for determining the segmentation error. 

Before applying the segmentation algorithm to detect alveolar sacs, morphological 

reconstruction methods including closing and opening were applied to enhance the shape of 

foreground markers (alveolar walls) and minimize the segmentation error. Moreover, the post 

processing was performed to quantify the parameters of interest including, 2D area of each 

alveolus, the total area of alveoli, the distance between all two points of each alveolar wall, 

maximum, minimum, and average diameter of alveolar sacs and the total number of alveolar sacs. 

The 2D area of each alveolus was calculated by summing the number of the white pixels within 

each contour of the binary image.  
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4.5. Results  

4.5.1.  Alveolar structure segmentation  

3D OCT scans were taken from different spots of rat lung lobes. Figure 4-4 showed one of 

the best images acquired by the OCT scans. However, the OCT images have the average quality 

shown in top panel of figure 4-9. In these images, the contour of the individual alveolus cannot be 

clearly seen. The implemented segmentation algorithm, however, was able to detect the contours 

of the alveolar sacs with an accuracy of 98.6% compared to manual detection. The bottom panel 

in figure 4-9 shows the segmented alveolar sacs in yellow color. The segmentation algorithm is 

capable of finding the contour of each alveolus and calculating the 2D cross section area of each 

alveolus, the total area of alveoli, maximum, minimum, and average diameter of alveolar sacs in 

the image and the total number of alveolar sacs. 

 

 

Figure 4-9: Top: Average quality 2D image of lung alveoli at a depth of 75 μm from 450 g five months old rat captured 

and reconstructed by SD-OCT in the ventilated pressure of 5 torr. Bottom: Yellow contours show segmented alveolar 

sacs. Total number of alveoli in this image is 106, 2D cross section area of an alveolus is 4070 (μm)
2
 on average, and 

diameter of the alveolus is 72 μm on average. 
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4.5.2.  Alveolar compliance results  

In order to see the dynamic change of structure, SD-OCT data were collected from the 

surface of a buffer perfused and ventilated rat lung at different ventilator pressures: 2.5, 5, and 6.5 

torr. The images were reconstructed and the segmentation algorithm was applied so that the 

structural changes of the lung could be extracted. Figure 4-10A shows the histograms of alveoli 

diameters at aforementioned pressures. As expected, alveoli diameter changes according to 

ventilator pressure. The higher the driving pressure, the greater alveoli diameter. Figure 4-10B 

shows the measured normalized alveolar volume as blue points together with a linear curve fit of 

alveoli volume versus ventilator pressure. The slope of the linear fit can also be seen in the figure, 

and this slope differs for diseased (edemic, obstructive, and restrictive) lungs compared to normal 

lungs, and can help to classify lung diseases. 

       

 

 

 

 

Results: The images of lung compliance experiments were reconstructed and segmented 

to extract the changes in the size of alveoli extracted (figure 1).  As expected, this parameter 

directly changes with ventilator pressure. The higher the lung ventilation pressure, the greater 

alveoli diameter (figure 2) and 2D area. Figure 2 shows the expiration alveoli compliance. We 

assume the slope of the compliance for edemic lungs to be smaller as compared to normal lungs 

and will help us to classify diseased lung vs. control [315].       

  

 

 
Figure 4-10: A: Histograms of alveoli diameter (μm) at three pressures: 2.5 torr (green), 5 torr (red), 6.5 torr (blue). B: 

Linear curve fitting of alveoli volume versus pressure. Lung was harvested from 450 g five months old rat. 
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Compliance experiments were repeated for normoxic lung versus edemic lung from two 

months old rats (n=2) weighing 300 and 350 g. Dynamic OCT scans of lungs undergoing simulated 

expiration were performed and a sequence of lung scans at different stages of alveolar compression 

was acquired for normal and edemic lung. Figure 4-11 demonstrates the SD-OCT reconstructed 

images. The structural dynamic was quantified after applying segmentation algorithm and was 

compared between edemic and normal lungs at predefined lung pressure of 8.1 torr. This figure 

displays that the edemic lung (top panel) has smaller alveoli diameter and smaller cross sectional 

area when compared with the normal lung (bottom panel). Total number of alveoli in a specific 

FOV of normal lung was 243, 2D cross section area of an alveolus was 2249 (μm)
2
 on average, 

and the average diameter of an alveolus was 63.5 μm. However, in the same field of view, edemic 

rat lung had 222 alveoli, 2D cross section area of an alveolus was 1843 (μm)
2
 on average, and the 

diameter of an alveolus was 58 μm on average. 

The expiration compliance of the normal and edemic lungs versus pressure are shown in 

figure 4-12. Alveolar expiration compliance is a measure of the ability of the alveoli sacs to stretch, 

and it is assessed by quantifying the changes in alveolar volume due to continuous decrease in the 

airway pressure. The slope of the line fitted to the compliance data points was calculated for the 

edemic and normal lung. Results showed a decrease of 40% in the slope of the edemic compliance 

when compared with the slope of the normal compliance [2]. 
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4.6. Conclusion 

Spectral domain OCT was utilized to monitor and study the structural dynamics in lungs 

in real-time fashion. A fast image processing algorithm was developed to quantify the 

morphological changes in lung for disease diagnosis purposes. The ability of this technique was 

 
Figure 4-12: Alveolar expiration compliance of edemic (red color) and normal (blue color) rat lungs [2]. 

 

 

 

 

 

Figure 4-11: 2D images of alveoli from ex vivo rat 

lung captured and reconstructed by SD-OCT at a 

depth of 83 μm and a ventilated representative 

pressure of 8.1 torr. Top: Green contours show 

segmented alveolar sacs in the edemic rat lung. 

Total number of alveoli in this image is 222, 2D 

cross section area of an alveolus is 1843 (μm)
2
 on 

average, and diameter of an alveolus is 58 μm on 

average. Bottom: Purple contours show 

segmented alveolar sacs in the normal rat lung. 

Total number of alveoli in this image is 243, 2D 

cross section area of an alveolus is 2249 (μm)
2
 on 

average, and diameter of an alveolus is 63.5 μm 

on average [2].  
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verified by quantifying the dynamic changes of alveolar morphology in a rodent injury model of 

pulmonary edema. Our method detected alveolar structure and statistically (within each set of 

images from 2 rats of each group) quantified four parameters, including diameter and area of each 

alveolus, total number of alveolar sacs, and alveolar compliance. Alveolar expiration compliance 

was quantified by computing the alveolar morphology of the ex vivo lung acquired at different 

levels of expansion and compression.  

Automated quantification of the alveoli compliance from SD-OCT images revealed a 

decreased compliance in edemic lung when compared to the normal lung. The reason behind lower 

compliance of the edemic lungs lies on the mechanical stress which liquid-filled alveoli induce on 

air-filled alveoli. Reducing the compliance of air-filled alveoli results in a decreases in the overall 

lung compliance.  

Dynamic OCT scans of lungs undergoing simulated respiration at predefined lung 

pressures combined with our fast quantification software demonstrated the practicality of our 

method and showed its potential in the evaluation of alveoli compliance in a range of diseases. 

Quantification of lung and alveoli structure dimensions at each pressure, and changes across 

pressures, could provide an indicator of changes in tissue compliance due to tissue remodeling, 

which is significant in diseases such as edema, emphysema and pulmonary fibrosis. 
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Chapter 5 

Conclusion and future work  
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5. Conclusion and future direction 

This thesis has explored different optical techniques to quantify the effect of the oxidative 

stress due to injury on the cellular structure and physiological responses in eyes and lungs. The 

novel approaches presented in this thesis have shown the ability for quantitative detection of 

mitochondrial dysfunction due to injuries and stress conditions in tissue and cells.  

The following four sub-sections present conclusion and outlook for each optical imaging 

technique. 

5.1 Cryoimaging  

The results of our cryoimaging studies demonstrate the quantitative capability of the optical 

cryoimaging technique to measure the retina mitochondrial redox state. Optical redox imaging 

yields a direct analysis of the cellular metabolic state within the mitochondrial compartment of the 

retina from animal model of diabetes, retinitis pigmentosa, OIR, and HHT1, which have not 

previously been reported. Our cryoimaging research showed a significant difference in the redox 

state of healthy and injured eyes, confirming the application of this technique in diagnosis of ocular 

injuries. Apart from expanding the application to a wide variety of injuries and diseases, it is 

possible to use this as a technique to investigate the progress of the injury or the effect of therapy 

over time. 

Optical redox imaging is also helpful to study the effect of the gene manipulation and 

deletion on the eye metabolism. Our results revealed that the endoglin gene maintains the oxidative 

state in retina and knocking out this gene makes the retina more resistive to the ROS and reduces 

its metabolic redox state. However, other injuries investigated in this research, including diabetes 

and retinitis pigmentosa, showed an increase in the redox state and more oxidized chain. Our study 
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also showed a significant difference in the mean redox ratio of eyes with and without endoglin 

haploinsufficiency in both room air and OIR conditions. This result discloses the essential role of 

reactive oxygen species and the effect of the ambient oxygen concentration on the metabolism and 

hence cellular activities including angiogenesis. 

These results will inspire future studies that will allow researchers to establish a diagnostic 

tool for early detection of different diseases and a correlation between retinal degeneration and 

changes in the RR levels, as a marker of oxidative stress caused by disease progression. 

Furthermore, the studies presented in this thesis set the stage for future studies, using ex vivo and 

in vivo fluorescence imaging of mitochondrial redox states of retina to characterize disease 

progression in various retinal dystrophies and to evaluate mitochondria targeted drug regimens 

that diminish oxidative stress.  

5.2 Image cytometry  

Automated multi-feature quantification of diabetic retinopathy and retinal vascular 

changes in retinal trypsin digests samples was studied. Diabetic retinopathy is a progressive 

disease and many of the early changes associated with vascular dysfunction go undetected due to 

our inability to discover such changes early on. The multi-parameter method described in this 

thesis provides an opportunity to get a comprehensive view of retinal vasculature at the cellular 

level. Therefore, with advancements in new imaging modalities with cellular resolution it will be 

possible to utilize the method developed here for quantitative evaluation of retinal vasculature with 

significant accuracy. This knowledge will be instrumental in development of new treatment 

modality to stop the development and progression of the disease and save vision.  
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Our novel quantification method measures subtle retinal vascular changes, which are 

markers of early microvascular dysfunction during diabetes and/or diabetes development. These 

markers include cell count, EC/PC ratios, fractal dimension, the vessel coverage, and acellular 

capillary count of the images. Segmentation of images containing touching and overlapping cell 

nuclei is the most difficult stage for quantitative cell segmentation, and it is the subject of the future 

work to improve clustered cell segmentation algorithm. We hope that by using multi-phase active 

contour technique and considering multiple level set functions, each individual cell type and cell 

cluster can be segmented. Therefore, the error of the automatic cell counting and distinguishing 

the cell type due to clustered cells can be further reduced. 

5.3 In vitro time lapse microscopy  

Using fluorescence time lapse microscopy, a novel approach was provided to partition and 

quantify the dynamics of O2
•- production from ETC complexes under different simulated metabolic 

stress conditions in intact live cells, for the first time. This approach has far-reaching implications 

for assessment of ROS in physiology and pathophysiology. Measuring the O2
•- dynamics, 

particularly in the early phase of the stress response could lead to future studies extending the 

approach to situations that would allow us to establish a diagnostic tool for assessing the role of 

the mitochondrial ROS in different diseases. 

Utilizing this novel approach and fluorescence microscopy, ROS dynamics was assessed in 

PAECs due to the metabolic modulation (to mimic pathological ROS emission), injury (persistent 

pulmonary hypertension; PPHN), and oxygen tension (hypoxia, IR). ROS-mediated injuries 

including hypoxia and IR were modeled with hypoxic environment in microscope top incubator. 

Metabolic modulation, pulmonary hypertension, and IR demonstrated greater mitochondrial 
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superoxide production rate. However, uncoupled ETC in hypoxic condition showed that lower 

concentration of ambient oxygen decreases the severity of the metabolic stress and mitochondrial 

dysfunction. This phenomenon shows the potential of the hypoxia therapy for the lung injuries 

including hyperoxia and PPHN, and it is our next step to further expand this research. It is also 

predicted that hyperoxic condition may exacerbates the severity of lung injury in PAECs by 

modulating superoxide levels produced. Furthermore, it is intended for future studies to monitor 

the behavior of the injured PAECs under long hypoxic conditions followed by hyperoxic 

conditions to investigate the effect of the ambient oxygen concentrations on the severity of the 

injuries lung sustained. Studying a hypoxic condition followed by a hyperoxic condition is also 

advantageous in another aspect as well, since it simulates the birth transition of the fetal lung for 

the PAECs. The immature lung of the fetus that develops in moderate hypoxia in-utero, might be 

more vulnerable to other injury in the relatively hyperoxic extra-uterine environment. 

5.4  Ex vivo OCT imaging  

Spectral domain OCT in combination with a fast image processing algorithm was utilized 

to monitor and study the structural dynamics in lungs in real-time fashion. The ability of our 

technique was verified by quantifying the dynamic changes of alveolar morphology and expiration 

compliance in a rodent injury model of pulmonary edema. Automated quantification of the alveoli 

compliance from SD-OCT images revealed a decreased compliance in edemic lung, which also 

reduces the overall lung compliance when compared to the normal lung. Our method has the 

potential in the evaluation of alveoli compliance in a range of diseases such as edema, emphysema 

and pulmonary fibrosis.  
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We intend to extend our OCT studies and evaluate structural changes in lung tissue in 

hyperoxia injury rodent models ex vivo for real-time disease diagnosis. Hyperoxia injury has 

known effects on alveolar structures in lung which has not been previously measured in real time 

using OCT. Prolonged hyperoxia causes impaired alveolization leading to alveolar dilation as well 

as a decrease in the number of alveoli [304]. Alveolar dilation in hyperoxic lungs causes an 

increase in the alveoli diameter [304] and hence in alveolar compliance [316]. 
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