229 research outputs found

    Drug-related mutational patterns in hepatitis B virus (HBV) reverse transcriptase proteins from Iranian treatment-Naïve chronic HBV patients

    Get PDF
    Background: Immunomodulators and Nucleotide analogues have been used globally for the dealing of chronic hepatitis B virus (HBV) infection. However, the development of drug resistance is a major limitation to their long-term effectiveness. Objectives: The aim of this study was to characterize the hepatitis B virus reverse transcriptase (RT) protein variations among Iranian chronic HBV carriers who did not receive any antiviral treatments. Materials and Methods: Hepatitis B virus partial RT genes from 325 chronic in active carrier patients were amplified and directly sequenced. Nucleotide/amino acid substitutions were identified compared to the sequences obtained from the database. Results: All strains belonging to genotype D.365 amino-acid substitutions were found. Mutations related to lamivudine, adefovir, telbivudine, and entecavir occurred in (YMDD) 4% (n = 13), (SVQ) 17.23% (n = 56), (M204I/V + L180M) 2.45% (n = 8) and (M204I) 2.76% (n = 9) of patients, respectively. Conclusions: RT mutants do occur naturally and could be found in HBV carriers who have never received antiviral therapy. However, mutations related to drug resistance in Iranian treatment-naïve chronic HBV patients were found to be higher than other studies published formerly. Chronic HBV patients should be monitored closely prior the commencement of therapy to achieve the best regimen option. © 2013, KOWSAR Corp

    The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability

    Get PDF
    In multicellular organisms, the mechanisms by which diverse cell types acquire distinct amino acids and how cellular function adapts to their availability are fundamental questions in biology. We found that increased neutral essential amino acid (NEAA) uptake was a critical component of erythropoiesis. As red blood cells matured, expression of the amino acid transporter gene Lat3 increased, which increased NEAA import. Inadequate NEAA uptake by pharmacologic inhibition or RNAi-mediated knockdown of LAT3 triggered a specific reduction in hemoglobin production in zebrafish embryos and murine erythroid cells through the mTORC1 (mammalian target of rapamycin complex 1)/4E-BP (eukaryotic translation initiation factor 4E–binding protein) pathway. CRISPR-mediated deletion of members of the 4E-BP family in murine erythroid cells rendered them resistant to mTORC1 and LAT3 inhibition and restored hemoglobin production. These results identify a developmental role for LAT3 in red blood cells and demonstrate that mTORC1 serves as a homeostatic sensor that couples hemoglobin production at the translational level to sufficient uptake of NEAAs, particularly L-leucine.National Institutes of Health (U.S.) (P01 HL032262

    Computed tomography and magnetic resonance imaging of hydatid disease: A pictorial review of uncommon imaging presentations

    Get PDF
    Hydatid disease (HD), also known as echinococcal disease or echinococcosis, is a worldwide zoonosis with a wide geographic distribution. It can be found in almost all parts of the body and usually remains silent for a long period of time. Clinical history can be varied based on the location, size, host immune response, and complications. The most common imaging modalities used for diagnosis and further evaluations of HD are ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI). Although conventional radiography may be the first used tool, rarely can lead to a definite judgment. Clinical indications and cyst location may alter the choice of imaging. MRI and CT would be useful when the involved area is inaccessible for ultrasound or surgical treatment is required. CT is particularly valuable for osseous organ involvements and the presence of calcifications in the cyst and also demonstrates the size, number, and local complications. MRI can differentiate HD from neoplasms in cases with an unusual appearance on imaging. Moreover, it is preferable in biliary or neural involvements. Besides, more detailed images of MRI and CT could help to resolve the diagnostic uncertainty. Imaging is the main stem for HD diagnosis. Brain, orbit, muscle, bone, and vascular structures are less commonly involved areas. Familiarity with typical clinical presentation, CT scan and MR imaging findings of HD in this sites facilitate the radiologic diagnosis and guiding appropriate treatment. © 2021 The Author(s

    Dehydration-induced modulation of kappa-opioid inhibition of vasopressin neurone activity

    Get PDF
    Dehydration increases vasopressin (antidiuretic hormone) secretion from the posterior pituitary gland to reduce water loss in the urine. Vasopressin secretion is determined by action potential firing in vasopressin neurones, which can exhibit continuous, phasic (alternating periods of activity and silence), or irregular activity. Autocrine κ-opioid inhibition contributes to the generation of activity patterning of vasopressin neurones under basal conditions and so we used in vivo extracellular single unit recording to test the hypothesis that changes in autocrine κ-opioid inhibition drive changes in activity patterning of vasopressin neurones during dehydration. Dehydration increased the firing rate of rat vasopressin neurones displaying continuous activity (from 7.1 ± 0.5 to 9.0 ± 0.6 spikes s(−1)) and phasic activity (from 4.2 ± 0.7 to 7.8 ± 0.9 spikes s(−1)), but not those displaying irregular activity. The dehydration-induced increase in phasic activity was via an increase in intraburst firing rate. The selective κ-opioid receptor antagonist nor-binaltorphimine increased the firing rate of phasic neurones in non-dehydrated rats (from 3.4 ± 0.8 to 5.3 ± 0.6 spikes s(−1)) and dehydrated rats (from 6.4 ± 0.5 to 9.1 ± 1.2 spikes s(−1)), indicating that κ-opioid feedback inhibition of phasic bursts is maintained during dehydration. In a separate series of experiments, prodynorphin mRNA expression was increased in vasopressin neurones of hyperosmotic rats, compared to hypo-osmotic rats. Hence, it appears that dynorphin expression in vasopressin neurones undergoes dynamic changes in proportion to the required secretion of vasopressin so that, even under stimulated conditions, autocrine feedback inhibition of vasopressin neurones prevents over-excitation

    Unveiling the pathogenic mechanisms of NPR2 missense variants: insights into the genotype-associated severity in acromesomelic dysplasia and short stature

    Get PDF
    Introduction: Natriuretic peptide receptor 2 (NPR2 or NPR-B) plays a central role in growth development and bone morphogenesis and therefore loss-of-function variations in NPR2 gene have been reported to cause Acromesomelic Dysplasia, Maroteaux type 1 and short stature. While several hypotheses have been proposed to underlie the pathogenic mechanisms responsible for these conditions, the exact mechanisms, and functional characteristics of many of those variants and their correlations with the clinical manifestations have not been fully established.Methods: In this study, we examined eight NPR2 genetic missense variants (p.Leu51Pro, p.Gly123Val, p.Leu314Arg, p.Arg318Gly, p.Arg388Gln, p.Arg495Cys, p.Arg557His, and p.Arg932Cys) Acromesomelic Dysplasia, Maroteaux type 1 and short stature located on diverse domains and broadly classified as variants of uncertain significance. The evaluated variants are either reported in patients with acromesomelic dysplasia in the homozygous state or short stature in the heterozygous state. Our investigation included the evaluation of their expression, subcellular trafficking and localization, N-glycosylation profiles, and cyclic guanosine monophosphate (cGMP) production activity.Results and Discussion: Our results indicate that variants p.Leu51Pro, p.Gly123Val, p.Leu314Arg, p.Arg388Gln have defective cellular trafficking, being sequestered within the endoplasmic reticulum (ER), and consequently impaired cGMP production ability. Conversely, variants p.Arg318Gly, p.Arg495Cys, and p.Arg557His seem to display a non-statistically significant behavior that is slightly comparable to WT-NPR2. On the other hand, p.Arg932Cys which is located within the guanylyl cyclase active site displayed normal cellular trafficking profile albeit with defective cGMP. Collectively, our data highlights the genotype-phenotype relationship that might be responsible for the milder symptoms observed in short stature compared to acromesomelic dysplasia. This study enhances our understanding of the functional consequences of several NPR2 variants, shedding light on their mechanisms and roles in related genetic disorders which might also help in their pathogenicity re-classification

    Internet addiction and its psychosocial risks (depression, anxiety, stress and loneliness) among Iranian adolescents and young adults: a structural equation model in a cross-sectional study

    Get PDF
    Internet addiction has become an increasingly researched area in many Westernized countries. However, there has been little research in developing countries such as Iran, and when research has been conducted, it has typically utilized small samples. This study investigated the relationship of Internet addiction with stress, depression, anxiety, and loneliness in 1,052 Iranian adolescents and young adults. The participants were randomly selected to complete a battery of psychometrically validated instruments including the Internet Addiction Test, Depression Anxiety Stress Scale, and the Loneliness Scale. Structural equation modeling and Pearson correlation coefficients were used to determine the relationship between Internet addiction and psychological impairments (depression, anxiety, stress and loneliness). Pearson correlation, path analysis, multivariate analysis of variance (MANOVA), and t-tests were used to analyze the data. Results showed that Internet addiction is a predictor of stress, depression, anxiety, and loneliness. Findings further indicated that addictive Internet use is gender sensitive and that the risk of Internet addiction is higher in males than in females. The results showed that male Internet addicts differed significantly from females in terms of depression, anxiety, stress, and loneliness. The implications of these results are discussed

    Scenario Planning and Nanotechnological Futures

    Full text link
    Scenario planning may assist us in harnessing the benefits of nanotechnology and managing the associated risks for the good of the society. Scenario planning is a way to describe the present state of the world and develop several hypotheses about the future of the world, thereby enabling discussions about how the world ought to be. Scenario planning thus is not only a tool for learning and foresight, but also for leadership. Informed decision-making by experts and political leaders becomes possible, while simultaneously allaying public's perception of the risks of new and emerging technologies such as nanotechnology. Two scenarios of the societal impact of nanotechnology are the mixed-signals scenario and the confluence scenario. Technoscientists have major roles to play in both scenarios

    Cholinergic Activation of M2 Receptors Leads to Context-Dependent Modulation of Feedforward Inhibition in the Visual Thalamus

    Get PDF
    The temporal dynamics of inhibition within a neural network is a crucial determinant of information processing. Here, the authors describe in the visual thalamus how neuromodulation governs the magnitude and time course of inhibition in an input-dependent way

    Active and poised promoter states drive folding of the extended HoxB locus in mouse embryonic stem cells

    Get PDF
    Gene expression states influence the three-dimensional conformation of the genome through poorly understood mechanisms. Here, we investigate the conformation of the murine HoxB locus, a gene-dense genomic region containing closely spaced genes with distinct activation states in mouse embryonic stem (ES) cells. To predict possible folding scenarios, we performed computer simulations of polymer models informed with different chromatin occupancy features, which define promoter activation states or CTCF binding sites. Single cell imaging of the locus folding was performed to test model predictions. While CTCF occupancy alone fails to predict the in vivo folding at genomic length scale of 10 kb, we found that homotypic interactions between active and Polycomb-repressed promoters co-occurring in the same DNA fibre fully explain the HoxB folding patterns imaged in single cells. We identify state-dependent promoter interactions as major drivers of chromatin folding in gene-dense regions
    corecore