17 research outputs found

    An active serological survey of antibodies to newcastle disease and avian influenza (H9N2) viruses in the unvaccinated backyard poultry in Bushehr province,Iran, 2012–2013

    No full text
    Objective: To test the antibodies against newcastle disease virus (NDV) and avian influenza virus (AIV, H9N2) in the unvaccinated backyard poultry in Bushehr province, Iran from 2012 to 2013. Methods: A total of 1 530 blood samples from unvaccinated backyard chickens in Bushehr province, south of Iran, were tested for antibodies against NDV and AIV (H9N2) by hemagglutination inhibition test according to International Epizootic Office (OIE) recommendation. Results: Of these, 614 (40.13%) and 595 (39.00%) were positive for NDV and AIV (H9N2) respectively. Conclusions: The findings of the present study indicated that NDV and AIV (H9N2) were endemic and widely distributed in backyard areas of Bushehr province which should be incorporated in the control strategies. Further studies are needed to identify the circulating virus genotypes, model their transmission risk, provide adapted control measures and design proper and applicable vaccination program

    Complete genome sequence of Trueperella pyogenes strain Arash114, isolated from the uterus of a water buffalo (Bubalus bubalis) in Iran

    Get PDF
    Objective: Trueperella pyogenes has been considered a major causative agent of metritis, abortion, and death in a broad range of domestic and wild animals, including cattle, swine, sheep, goats, camels, buffalo, deer, antelopes, reptiles, and birds. Data description: Here, we report the complete chromosome sequence of Trueperella pyogenes strain Arash114, isolated from the uterus of a water buffalo (Bubalus bubalis) died due to the infection caused by this pathogen. The genome assembly comprised 2,338,282 bp, with a 59.5% GC content. Annotation of the genome showed 46 tRNA genes, 6 rRNA, 1 CRISPR and 2059 coding sequences. Also, several genes coding for antimicrobial resistance such as tetW and virulence factor including plo, nanH, nanP, cbp and 4 fimbrial proteins were found. This study will advance our knowledge regarding the metabolism, virulence factors, antibiotic resistance and evolution of Arash114 strain and serve as an appropriate template for future researches. Keywords: Complete genome sequencing; Trueperella pyogenes; Uterus infection; Water buffalo

    Pathogen and Host Response Dynamics in a Mouse Model of Borrelia hermsii Relapsing Fever.

    No full text
    Most Borrelia species that cause tick-borne relapsing fever utilize rodents as their natural reservoirs, and for decades laboratory-bred rodents have served as informative experimental models for the disease. However, while there has much progress in understanding the pathogenetic mechanisms, including antigenic variation, of the pathogen, the host side of the equation has been neglected. Using different approaches, we studied, in immunocompetent inbred mice, the dynamics of infection with and host responses to North American relapsing fever agent B. hermsii. The spirochete's generation time in blood of infected mice was between 4-5 h and, after a delay, was matched in rate by the increase of specific agglutinating antibodies in response to the infection. After initiating serotype cells were cleared by antibodies, the surviving spirochetes were a different serotype and, as a population, grew more slowly. The retardation was attributable to the host response and not an inherently slower growth rate. The innate responses at infection peak and immediate aftermath were characterized by elevations of both pro-inflammatory and anti-inflammatory cytokines and chemokines. Immunodeficient mice had higher spirochete burdens and severe anemia, which was accounted for by aggregation of erythrocytes by spirochetes and their partially reversible sequestration in greatly enlarged spleens and elsewhere

    Characteristics of uninfected, infected, and treated SCID mice with systemic <i>Borrelia hermsii</i> infections.

    No full text
    a<p>The number of days for each mouse were from day −3 until euthanasia (see text).</p>b<p><i>p</i> values by <i>t</i> test/Mann Whitney rank sum.</p>c<p>-, not applicable.</p
    corecore