17 research outputs found
Recommended from our members
Chromosome Sequence of Borrelia miyamotoi, an Uncultivable Tick-Borne Agent of Human Infection.
Borrelia miyamotoi is a newly recognized agent of human disease. B. miyamotoi strain LB-2001, an isolate from the tick Ixodes scapularis, was propagated in mice. The sequence of the chromosome was determined by next-generation sequencing of DNA isolated from whole blood. The sequence established that B. miyamotoi is a relapsing fever group species
An active serological survey of antibodies to newcastle disease and avian influenza (H9N2) viruses in the unvaccinated backyard poultry in Bushehr province,Iran, 2012–2013
Objective: To test the antibodies against newcastle disease virus (NDV) and avian influenza virus (AIV, H9N2) in the unvaccinated backyard poultry in Bushehr province, Iran from 2012 to 2013.
Methods: A total of 1 530 blood samples from unvaccinated backyard chickens in Bushehr province, south of Iran, were tested for antibodies against NDV and AIV (H9N2) by hemagglutination inhibition test according to International Epizootic Office (OIE) recommendation.
Results: Of these, 614 (40.13%) and 595 (39.00%) were positive for NDV and AIV (H9N2) respectively.
Conclusions: The findings of the present study indicated that NDV and AIV (H9N2) were endemic and widely distributed in backyard areas of Bushehr province which should be incorporated in the control strategies. Further studies are needed to identify the circulating virus genotypes, model their transmission risk, provide adapted control measures and design proper and applicable vaccination program
Recommended from our members
Elevated carbon monoxide to carbon dioxide ratio in the exhaled breath of mice treated with a single dose of lipopolysaccharide.
BackgroundAnalysis of volatile organic chemicals in breath holds promise for noninvasive diagnosis and monitoring of patients, but investigation of this in experimental mouse models has been limited. Of particular interest is endogenous production of carbon monoxide as a biomarker of inflammation and, more particularly, during sepsis.MethodsUsing a nose-only collection procedure for unanesthetized individual adult mice and sensitive gas chromatography of carbon monoxide (CO) and carbon dioxide (CO2) of sampled breath, we investigated the responses of mice to one-time injections with different doses of purified Escherichia coli lipopolysaccharide. Two strains of mice were examined: BALB/c and C3H, including an endotoxin-resistant mutant (HeJ) as well as the wild type (HOuJ).ResultsThe CO to CO2 ratio increased in a dose-responsive manner within hours in treated BALC/c mice but not control mice. The CO/CO2 values declined to the range of control mice within 48-72 h after the injection of lipopolysaccharide. Breath CO/CO2 values correlated with systemic inflammation biomarkers in serum and heme oxygenase-1 gene expression in blood. C3H/HOuJ mice, but not the HeJ mice, had similar increases of the CO/CO2 ratio in response to the endotoxin.ConclusionsCarbon monoxide concentrations in exhaled breath of at least 2 strains of mice increase in response to single injections of endotoxin. The magnitude of increase was similar to what was observed with a bacteremia model. These findings with an experimental model provide a rationale for further studies of normalized CO concentrations in human breath as an informative biomarker for staging and monitoring of sepsis
Complete genome sequence of Trueperella pyogenes strain Arash114, isolated from the uterus of a water buffalo (Bubalus bubalis) in Iran
Objective: Trueperella pyogenes has been considered a major causative agent of metritis, abortion, and death in a broad range of domestic and wild animals, including cattle, swine, sheep, goats, camels, buffalo, deer, antelopes, reptiles, and birds.
Data description: Here, we report the complete chromosome sequence of Trueperella pyogenes strain Arash114, isolated from the uterus of a water buffalo (Bubalus bubalis) died due to the infection caused by this pathogen. The genome assembly comprised 2,338,282 bp, with a 59.5% GC content. Annotation of the genome showed 46 tRNA genes, 6 rRNA, 1 CRISPR and 2059 coding sequences. Also, several genes coding for antimicrobial resistance such as tetW and virulence factor including plo, nanH, nanP, cbp and 4 fimbrial proteins were found. This study will advance our knowledge regarding the metabolism, virulence factors, antibiotic resistance and evolution of Arash114 strain and serve as an appropriate template for future researches.
Keywords: Complete genome sequencing; Trueperella pyogenes; Uterus infection; Water buffalo
Recommended from our members
Pathogen and Host Response Dynamics in a Mouse Model of Borrelia hermsii Relapsing Fever.
Most Borrelia species that cause tick-borne relapsing fever utilize rodents as their natural reservoirs, and for decades laboratory-bred rodents have served as informative experimental models for the disease. However, while there has much progress in understanding the pathogenetic mechanisms, including antigenic variation, of the pathogen, the host side of the equation has been neglected. Using different approaches, we studied, in immunocompetent inbred mice, the dynamics of infection with and host responses to North American relapsing fever agent B. hermsii. The spirochete's generation time in blood of infected mice was between 4-5 h and, after a delay, was matched in rate by the increase of specific agglutinating antibodies in response to the infection. After initiating serotype cells were cleared by antibodies, the surviving spirochetes were a different serotype and, as a population, grew more slowly. The retardation was attributable to the host response and not an inherently slower growth rate. The innate responses at infection peak and immediate aftermath were characterized by elevations of both pro-inflammatory and anti-inflammatory cytokines and chemokines. Immunodeficient mice had higher spirochete burdens and severe anemia, which was accounted for by aggregation of erythrocytes by spirochetes and their partially reversible sequestration in greatly enlarged spleens and elsewhere
Pathogen and Host Response Dynamics in a Mouse Model of Borrelia hermsii Relapsing Fever.
Most Borrelia species that cause tick-borne relapsing fever utilize rodents as their natural reservoirs, and for decades laboratory-bred rodents have served as informative experimental models for the disease. However, while there has much progress in understanding the pathogenetic mechanisms, including antigenic variation, of the pathogen, the host side of the equation has been neglected. Using different approaches, we studied, in immunocompetent inbred mice, the dynamics of infection with and host responses to North American relapsing fever agent B. hermsii. The spirochete's generation time in blood of infected mice was between 4-5 h and, after a delay, was matched in rate by the increase of specific agglutinating antibodies in response to the infection. After initiating serotype cells were cleared by antibodies, the surviving spirochetes were a different serotype and, as a population, grew more slowly. The retardation was attributable to the host response and not an inherently slower growth rate. The innate responses at infection peak and immediate aftermath were characterized by elevations of both pro-inflammatory and anti-inflammatory cytokines and chemokines. Immunodeficient mice had higher spirochete burdens and severe anemia, which was accounted for by aggregation of erythrocytes by spirochetes and their partially reversible sequestration in greatly enlarged spleens and elsewhere
Recommended from our members
Elevated Carbon Monoxide in the Exhaled Breath of Mice during a Systemic Bacterial Infection
Blood is the specimen of choice for most laboratory tests for diagnosis and disease monitoring. Sampling exhaled breath is a noninvasive alternative to phlebotomy and has the potential for real-time monitoring at the bedside. Improved instrumentation has advanced breath analysis for several gaseous compounds from humans. However, application to small animal models of diseases and physiology has been limited. To extend breath analysis to mice, we crafted a means for collecting nose-only breath samples from groups and individual animals who were awake. Samples were subjected to gas chromatography and mass spectrometry procedures developed for highly sensitive analysis of trace volatile organic compounds (VOCs) in the atmosphere. We evaluated the system with experimental systemic infections of severe combined immunodeficiency Mus musculus with the bacterium Borrelia hermsii. Infected mice developed bacterial densities of ∼107 per ml of blood by day 4 or 5 and in comparison to uninfected controls had hepatosplenomegaly and elevations of both inflammatory and anti-inflammatory cytokines. While 12 samples from individual infected mice on days 4 and 5 and 6 samples from uninfected mice did not significantly differ for 72 different VOCs, carbon monoxide (CO) was elevated in samples from infected mice, with a mean (95% confidence limits) effect size of 4.2 (2.8–5.6), when differences in CO2 in the breath were taken into account. Normalized CO values declined to the uninfected range after one day of treatment with the antibiotic ceftriaxone. Strongly correlated with CO in the breath were levels of heme oxygenase-1 protein in serum and HMOX1 transcripts in whole blood. These results (i) provide further evidence of the informativeness of CO concentration in the exhaled breath during systemic infection and inflammation, and (ii) encourage evaluation of this noninvasive analytic approach in other various other rodent models of infection and for utility in clinical management
Assembled apparatus for collection of exhaled breath samples from groups or individual mice.
<p>Selected components of the apparatus are indicated.</p
Characteristics of uninfected, infected, and treated SCID mice with systemic <i>Borrelia hermsii</i> infections.
a<p>The number of days for each mouse were from day −3 until euthanasia (see text).</p>b<p><i>p</i> values by <i>t</i> test/Mann Whitney rank sum.</p>c<p>-, not applicable.</p