281 research outputs found

    Growth and thermal stability of TiN/ZrAlN: Effect of internal interfaces

    Get PDF
    Wear resistant hard films comprised of cubic transition metal nitride (c-TMN) and metastable c-AlN with coherent interfaces have a confined operating envelope governed by the limited thermal stability of metastable phases. However, equilibrium phases (c-TMN and wurtzite(w)-AlN) forming semicoherent interfaces during film growth offer higher thermal stability. We demonstrate this concept for a model multilayer system with TiN and ZrAlN layers where the latter is a nanocomposite of ZrN- and AlN- rich domains. The interfaces between the domains are tuned by changing the AlN crystal structure by varying the multilayer architecture and growth temperature. The interface energy minimization at higher growth temperature leads to formation of semicoherent interfaces between w-AlN and c-TMN during growth of 15 nm thin layers. Ab initio calculations predict higher thermodynamic stability of semicoherent interfaces between c-TMN and w-AlN than isostructural coherent interfaces between c-TMN and c-AlN. The combination of a stable interface structure and confinement of w-AlN to nm-sized domains by its low solubility in c-TMN in a multilayer, results in films with a stable hardness of 34 GPa even after annealing at 1150 °C.Peer ReviewedPostprint (author's final draft

    Atom localization via phase and amplitude control of the driving field

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org/Control of amplitude and phase of the driving field in an atom-field interaction leads towards the strong line narrowing and quenching in the spontaneous emission spectrum. We exploit this fact for the atom localization scheme and achieve a much better spatial resolution in the conditional position probability distribution of the atom. Most importantly the quenching in the spontaneous emission manifests itself in reducing the periodicity in the conditional position probability distribution and hence the uncertainty in a particular position measurement of the single atom by a factor of 2

    Index lesion contouring on prostate MRI for targeted MRI/US fusion biopsy - Evaluation of mismatch between radiologists and urologists

    Full text link
    PURPOSE: Mistargeting of focal lesions due to inaccurate segmentations can lead to false-negative findings on MRI-guided targeted biopsies. The purpose of this retrospective study was to examine inter-reader agreement of prostate index lesion segmentations from actual biopsy data between urologists and radiologists. METHOD: Consecutive patients undergoing transperineal MRI-targeted prostate biopsy for PI-RADS 3-5 lesions between January 2020 and December 2021 were included. Agreement between segmentations on T2w-images between urologists and radiologists was assessed with Dice similarity coefficient (DSC) and 95 % Hausdorff distance (95 % HD). Differences in similarity scores were compared using Wilcoxon test. Differences depending on lesion features (size, zonal location, PI-RADS scores, lesion distinctness) were tested with Mann-Whitney U test. Correlation with prostate signal-intensity homogeneity score (PSHS) and lesion size was tested with Spearman's rank correlation. RESULTS: Ninety-three patients (mean age 64.9 ± 7.1y, median serum PSA 6.5 [4.33-10.00]) were included. Mean similarity scores were statistically significantly lower between urologists and radiologists compared to radiologists only (DSC 0.41 ± 0.24 vs. 0.59 ± 0.23, p < 0.01; 95 %HD 6.38 ± 5.45 mm vs. 4.47 ± 4.12 mm, p < 0.01). There was a moderate and strong positive correlation between DSC scores and lesion size for segmentations from urologists and radiologists (ρ = 0.331, p = 0.002) and radiologists only (ρ = 0.501, p < 0.001). Similarity scores were worse in lesions ≤ 10 mm while other lesion features did not significantly influence similarity scores. CONCLUSION: There is significant mismatch of prostate index lesion segmentations between urologists and radiologists. Segmentation agreement positively correlates with lesion size. PI-RADS scores, zonal location, lesion distinctness, and PSHS show no significant impact on segmentation agreement. These findings could underpin benefits of perilesional biopsies

    Prediction of pelvic lymph node metastases and PSMA PET positive pelvic lymph nodes with multiparametric MRI and clinical information in primary staging of prostate cancer

    Full text link
    PURPOSE To compare the accuracy of multiparametric MRI (mpMRI), 68^{68}Ga-PSMA PET and the Briganti 2019 nomogram in the prediction of metastatic pelvic lymph nodes (PLN) in prostate cancer, to assess the accuracy of mpMRI and the Briganti nomogram in prediction of PET positive PLN and to investigate the added value of quantitative mpMRI parameters to the Briganti nomogram. METHOD This retrospective IRB-approved study included 41 patients with prostate cancer undergoing mpMRI and 68^{68}Ga-PSMA PET/CT or MR prior to prostatectomy and pelvic lymph node dissection. A board-certified radiologist assessed the index lesion on diffusion-weighted (Apparent Diffusion Coefficient, ADC; mean/volume), T2-weighted (capsular contact length, lesion volume/maximal diameters) and contrast-enhanced (iAUC, kep_{ep}, Ktrans^{trans}, ve_{e}) sequences. The probability for metastatic pelvic lymph nodes was calculated using the Briganti 2019 nomogram. PET examinations were evaluated by two board-certified nuclear medicine physicians. RESULTS The Briganti 2019 nomogram performed superiorly (AUC: 0.89) compared to quantitative mpMRI parameters (AUCs: 0.47-0.73) and 68^{68}Ga-PSMA-11 PET (AUC: 0.82) in the prediction of PLN metastases and superiorly (AUC: 0.77) in the prediction of PSMA PET positive PLN compared to MRI parameters (AUCs: 0.49-0.73). The addition of mean ADC and ADC volume from mpMRI improved the Briganti model by a fraction of new information of 0.21. CONCLUSIONS The Briganti 2019 nomogram performed superiorly in the prediction of metastatic and PSMA PET positive PLN, but the addition of parameters from mpMRI can further improve its accuracy. The combined model could be used to stratify patients requiring ePLND or PSMA PET

    Surgical therapy of celiac axis and superior mesenteric artery syndrome

    Full text link
    INTRODUCTION Compression syndromes of the celiac artery (CAS) or superior mesenteric artery (SMAS) are rare conditions that are difficult to diagnose; optimal treatment remains complex, and symptoms often persist after surgery. We aim to review the literature on surgical treatment and postoperative outcome in CAS and SMAS syndrome. METHODS A systematic literature review of medical literature databases on the surgical treatment of CAS and SMAS syndrome was performed from 2000 to 2022. Articles were included according to PROSPERO guidelines. The primary endpoint was the failure-to-treat rate, defined as persistence of symptoms at first follow-up. RESULTS Twenty-three studies on CAS (n = 548) and 11 on SMAS (n = 168) undergoing surgery were included. Failure-to-treat rate was 28% for CAS and 21% for SMAS. Intraoperative blood loss was 95 ml (0-217) and 31 ml (21-50), respectively, and conversion rate was 4% in CAS patients and 0% for SMAS. Major postoperative morbidity was 2% for each group, and mortality was described in 0% of CAS and 0.4% of SMAS patients. Median length of stay was 3 days (1-12) for CAS and 5 days (1-10) for SMAS patients. Consequently, 47% of CAS and 5% of SMAS patients underwent subsequent interventions for persisting symptoms. CONCLUSION Failure of surgical treatment was observed in up to every forth patient with a high rate of subsequent interventions. A thorough preoperative work-up with a careful patient selection is of paramount importance. Nevertheless, the surgical procedure was associated with a beneficial risk profile and can be performed minimally invasive

    Reflective, polarizing, and magnetically soft amorphous Fe/Si multilayer neutron optics with isotope-enriched 11B4C inducing atomically flat interfaces

    Full text link
    The utilization of polarized neutrons is of great importance in scientific disciplines spanning materials science, physics, biology, and chemistry. Polarization analysis offers insights into otherwise unattainable sample information such as magnetic domains and structures, protein crystallography, composition, orientation, ion-diffusion mechanisms, and relative location of molecules in multicomponent biological systems. State-of-the-art multilayer polarizing neutron optics have limitations, particularly low specular reflectivity and polarization at higher scattering vectors/angles, and the requirement of high external magnetic fields to saturate the polarizer magnetization. Here, we show that by incorporating 11B4C into Fe/Si multilayers, amorphization and smooth interfaces can be achieved, yielding higher neutron reflectivity, less diffuse scattering and higher polarization. Magnetic coercivity is eliminated, and magnetic saturation can be reached at low external fields (>2 mT). This approach offers prospects for significant improvement in polarizing neutron optics, enabling; nonintrusive positioning of the polarizer, enhanced flux, increased data accuracy, and further polarizing/analyzing methods at neutron scattering facilities
    corecore