399 research outputs found
Millimeter Wave Ad Hoc Networks: Noise-limited or Interference-limited?
In millimeter wave (mmWave) communication systems, narrow beam operations
overcome severe channel attenuations, reduce multiuser interference, and thus
introduce the new concept of noise-limited mmWave wireless networks. The regime
of the network, whether noise-limited or interference-limited, heavily reflects
on the medium access control (MAC) layer throughput and on proper resource
allocation and interference management strategies. Yet, alternating presence of
these regimes and, more importantly, their dependence on the mmWave design
parameters are ignored in the current approaches to mmWave MAC layer design,
with the potential disastrous consequences on the throughput/delay performance.
In this paper, tractable closed-form expressions for collision probability and
MAC layer throughput of mmWave networks, operating under slotted ALOHA and
TDMA, are derived. The new analysis reveals that mmWave networks may exhibit a
non-negligible transitional behavior from a noise-limited regime to an
interference-limited regime, depending on the density of the transmitters,
density and size of obstacles, transmission probability, beamwidth, and
transmit power. It is concluded that a new framework of adaptive hybrid
resource allocation procedure, containing a proactive contention-based phase
followed by a reactive contention-free one with dynamic phase durations, is
necessary to cope with such transitional behavior.Comment: accepted in IEEE GLOBECOM'1
Beam-searching and Transmission Scheduling in Millimeter Wave Communications
Millimeter wave (mmW) wireless networks are capable to support multi-gigabit
data rates, by using directional communications with narrow beams. However,
existing mmW communications standards are hindered by two problems: deafness
and single link scheduling. The deafness problem, that is, a misalignment
between transmitter and receiver beams, demands a time consuming beam-searching
operation, which leads to an alignment-throughput tradeoff. Moreover, the
existing mmW standards schedule a single link in each time slot and hence do
not fully exploit the potential of mmW communications, where directional
communications allow multiple concurrent transmissions. These two problems are
addressed in this paper, where a joint beamwidth selection and power allocation
problem is formulated by an optimization problem for short range mmW networks
with the objective of maximizing effective network throughput. This
optimization problem allows establishing the fundamental alignment-throughput
tradeoff, however it is computationally complex and requires exact knowledge of
network topology, which may not be available in practice. Therefore, two
standard-compliant approximation solution algorithms are developed, which rely
on underestimation and overestimation of interference. The first one exploits
directionality to maximize the reuse of available spectrum and thereby
increases the network throughput, while imposing almost no computational
complexity. The second one is a more conservative approach that protects all
active links from harmful interference, yet enhances the network throughput by
100% compared to the existing standards. Extensive performance analysis
provides useful insights on the directionality level and the number of
concurrent transmissions that should be pursued. Interestingly, extremely
narrow beams are in general not optimal.Comment: 5 figures, 7 pages, accepted in ICC 201
On the Accuracy of Interference Models in Wireless Communications
We develop a new framework for measuring and comparing the accuracy of any
wireless interference models used in the analysis and design of wireless
networks. Our approach is based on a new index that assesses the ability of the
interference model to correctly predict harmful interference events, i.e., link
outages. We use this new index to quantify the accuracy of various interference
models used in the literature, under various scenarios such as Rayleigh fading
wireless channels, directional antennas, and blockage (impenetrable obstacles)
in the network. Our analysis reveals that in highly directional antenna
settings with obstructions, even simple interference models (e.g., the
classical protocol model) are accurate, while with omnidirectional antennas,
more sophisticated and complex interference models (e.g., the classical
physical model) are necessary. Our new approach makes it possible to adopt the
appropriate interference model of adequate accuracy and simplicity in different
settings.Comment: 7 pages, 3 figures, accepted in IEEE ICC 201
On the Relay-Fallback Tradeoff in Millimeter Wave Wireless System
Millimeter wave (mmWave) communications systems are promising candidate to
support extremely high data rate services in future wireless networks. MmWave
communications exhibit high penetration loss (blockage) and require directional
transmissions to compensate for severe channel attenuations and for high noise
powers. When blockage occurs, there are at least two simple prominent options:
1) switching to the conventional microwave frequencies (fallback option) and 2)
using an alternative non-blocked path (relay option). However, currently it is
not clear under which conditions and network parameters one option is better
than the other. To investigate the performance of the two options, this paper
proposes a novel blockage model that allows deriving maximum achievable
throughput and delay performance of both options. A simple criterion to decide
which option should be taken under which network condition is provided. By a
comprehensive performance analysis, it is shown that the right option depends
on the payload size, beam training overhead, and blockage probability. For a
network with light traffic and low probability of blockage in the direct link,
the fallback option is throughput- and delay-optimal. For a network with heavy
traffic demands and semi-static topology (low beam-training overhead), the
relay option is preferable.Comment: 6 pages, 5 figures, accepted in IEEE INFOCOM mmNet Worksho
Spectrum Sharing in mmWave Cellular Networks via Cell Association, Coordination, and Beamforming
This paper investigates the extent to which spectrum sharing in mmWave
networks with multiple cellular operators is a viable alternative to
traditional dedicated spectrum allocation. Specifically, we develop a general
mathematical framework by which to characterize the performance gain that can
be obtained when spectrum sharing is used, as a function of the underlying
beamforming, operator coordination, bandwidth, and infrastructure sharing
scenarios. The framework is based on joint beamforming and cell association
optimization, with the objective of maximizing the long-term throughput of the
users. Our asymptotic and non-asymptotic performance analyses reveal five key
points: (1) spectrum sharing with light on-demand intra- and inter-operator
coordination is feasible, especially at higher mmWave frequencies (for example,
73 GHz), (2) directional communications at the user equipment substantially
alleviate the potential disadvantages of spectrum sharing (such as higher
multiuser interference), (3) large numbers of antenna elements can reduce the
need for coordination and simplify the implementation of spectrum sharing, (4)
while inter-operator coordination can be neglected in the large-antenna regime,
intra-operator coordination can still bring gains by balancing the network
load, and (5) critical control signals among base stations, operators, and user
equipment should be protected from the adverse effects of spectrum sharing, for
example by means of exclusive resource allocation. The results of this paper,
and their extensions obtained by relaxing some ideal assumptions, can provide
important insights for future standardization and spectrum policy.Comment: 15 pages. To appear in IEEE JSAC Special Issue on Spectrum Sharing
and Aggregation for Future Wireless Network
MAC Aspects of Millimeter-Wave Cellular Networks
The current demands for extremely high data rate wireless services and the spectrum scarcity at the sub-6 GHz bands are forcefully motivating the use of the millimeter-wave (mmWave) frequencies. MmWave communications are characterized by severe attenuation, sparse-scattering environment, large bandwidth, high penetration loss, beamforming with massive antenna arrays, and possible noise-limited operation. These characteristics imply a major difference with respect to legacy communication technologies, primarily designed for the sub-6 GHz bands, and are posing major design challenges on medium access control (MAC) layer. This book chapter discusses key MAC layer issues at the initial access and mobility management (e.g., synchronization, random access, and handover) as well as resource allocation (interference management, scheduling, and association). The chapter provides an integrated view on MAC layer issues for cellular networks and reviews the main challenges and trade-offs and the state-of-the-art proposals to address them
Millimeter Wave Cellular Networks: A MAC Layer Perspective
The millimeter wave (mmWave) frequency band is seen as a key enabler of
multi-gigabit wireless access in future cellular networks. In order to overcome
the propagation challenges, mmWave systems use a large number of antenna
elements both at the base station and at the user equipment, which lead to high
directivity gains, fully-directional communications, and possible noise-limited
operations. The fundamental differences between mmWave networks and traditional
ones challenge the classical design constraints, objectives, and available
degrees of freedom. This paper addresses the implications that highly
directional communication has on the design of an efficient medium access
control (MAC) layer. The paper discusses key MAC layer issues, such as
synchronization, random access, handover, channelization, interference
management, scheduling, and association. The paper provides an integrated view
on MAC layer issues for cellular networks, identifies new challenges and
tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on
Communication
- …