10 research outputs found

    Discovery of catalases in members of the Chlamydiales order.

    Get PDF
    Catalase is an important virulence factor for survival in macrophages and other phagocytic cells. In Chlamydiaceae, no catalase had been described so far. With the sequencing and annotation of the full genomes of Chlamydia-related bacteria, the presence of different catalase-encoding genes has been documented. However, their distribution in the Chlamydiales order and the functionality of these catalases remain unknown. Phylogeny of chlamydial catalases was inferred using MrBayes, maximum likelihood, and maximum parsimony algorithms, allowing the description of three clade 3 and two clade 2 catalases. Only monofunctional catalases were found (no catalase-peroxidase or Mn-catalase). All presented a conserved catalytic domain and tertiary structure. Enzymatic activity of cloned chlamydial catalases was assessed by measuring hydrogen peroxide degradation. The catalases are enzymatically active with different efficiencies. The catalase of Parachlamydia acanthamoebae is the least efficient of all (its catalytic activity was 2 logs lower than that of Pseudomonas aeruginosa). Based on the phylogenetic analysis, we hypothesize that an ancestral class 2 catalase probably was present in the common ancestor of all current Chlamydiales but was retained only in Criblamydia sequanensis and Neochlamydia hartmannellae. The catalases of class 3, present in Estrella lausannensis and Parachlamydia acanthamoebae, probably were acquired by lateral gene transfer from Rhizobiales, whereas for Waddlia chondrophila they likely originated from Legionellales or Actinomycetales. The acquisition of catalases on several occasions in the Chlamydiales suggests the importance of this enzyme for the bacteria in their host environment

    CAID prediction portal: a comprehensive service for predicting intrinsic disorder and binding regions in proteins

    No full text
    International audienceIntrinsic disorder (ID) in proteins is well-established in structural biology, with increasing evidence for its involvement in essential biological processes. As measuring d ynamic ID beha vior e xperimentall y on a large scale remains difficult, scores of published ID predictor s ha ve tried to fill this gap. Unfortunatel y, their heterogeneity makes it difficult to compare perf ormance, conf ounding biologists wanting to make an informed choice. To address this issue, the Critical Assessment of protein Intrinsic Disorder (CAID) benchmarks predictors for ID and binding regions as a community blind-test in a standardized computing environment. Here we present the CAID Prediction Portal, a web server executing all CAID methods on user-defined sequences. The server generates standardized output and facilitates comparison between methods, producing a consensus prediction highlighting high-confidence ID regions. The website contains extensive documentation explaining the meaning of different CAID statistics and providing a brief description of all methods. Predictor output is visualized in an interactive feature viewer and made available for download in a single table, with the option to recover previous sessions via a priv ate dashboar d. The CAID Prediction Portal is a valuable resource for researchers interested in studying ID in proteins. The server is available at the URL: https://caid.idpcentral.org
    corecore