31 research outputs found

    Kajian Teknis Geometri Peledakan Berdasarkan Analisis Blastability Dan Digging Rate Alat Gali Muat Di Pit Mt-4 Tambang Air Laya PT Bukit Asam (Persero) Tbk Tanjung Enim, Sumatera Selatan

    Full text link
    Penentuan geometri peledakan dan powder factor harus memperhatikan karakteristik massa batuan dan kondisi geologi setempat agar dapat memperoleh fragmentasi produktif dimana persentase boulder kurang dari 15 % sehingga digging rate dan produktivitas alat gali muat dapat ditingkatkan. Percobaan geometri alternatif dilakukan untuk mengatasi masalah boulder yang dihasilkan. Rancangan geometri alternatif ditentukan dengan melakukan penelitian terhadap karakteristik massa batuan berdasarkan Lilly\u27s blastability index berupa rockmass description, joint plane spacing, joint plane orientation, specific gravity influence, dan hardness. Berdasarkan hasil pembobotan massa batuan yang akan diledakkan maka didapatkan nilai blastability index di lokasi penelitian sebesar 33,13 sehingga geometri peledakan yang baik untuk diterapkan untuk lubang bor 6,75 inci adalah burden sebesar 5,5 m, spasi 8,0 m, kedalaman lubang ledak 8,2 meter, subdrilling 0,3 m, tinggi jenjang 7,9 m, stemming 4,4 m, dan panjang kolom isian 3,8 m serta powder factor 0,20 kg/m3 sedangkan untuk lubang bor 7,875 inci adalah burden sebesar 6,5 m, spasi 9,0 m, kedalaman lubang ledak 8,3 m, subdrilling 0,3 m, tinggi jenjang 8,0 meter, stemming 4,6 m, dan panjang kolom isian 3,7 m serta powder factor 0,20 kg/m3, dimana dari kedua geometri usulan tersebut menghasilkan persentase boulder yang lebih kecil dibandingkan dengan geometri yang diterapkan saat ini

    Lower Bounds on Structure-Preserving Signatures for Bilateral Messages

    Get PDF
    Lower bounds for structure-preserving signature (SPS) schemes based on non-interactive assumptions have only been established in the case of unilateral messages, i.e. schemes signing tuples of group elements all from the same source group. In this paper, we consider the case of bilateral messages, consisting of elements from both source groups. We show that, for Type-III bilinear groups, SPS’s must consist of at least 6 group elements: many more than the 4 elements needed in the unilateral case, and optimal, as it matches a known upper bound from the literature. We also obtain the first non-trivial lower bounds for SPS’s in Type-II groups: a minimum of 4 group elements, whereas constructions with 3 group elements are known from interactive assumptions

    Stronger security notions for decentralized traceable attribute-based signatures and more efficient constructions

    Get PDF
    We revisit the notion of Decentralized Traceable Attribute-Based Signatures (DTABS) introduced by El Kaafarani et al. (CT-RSA 2014) and improve the state-of-the-art in three dimensions: Firstly, we provide a new stronger security model which circumvents some shortcomings in existing models. Our model minimizes the trust placed in attribute authorities and hence provides, among other things, a stronger definition for non-frameability. In addition, our model captures the notion of tracing soundness which is important for many applications of the primitive. Secondly, we provide a generic construction that is secure w.r.t. our strong security model and show two example instantiations in the standard model which are more efficient than existing constructions (secure under weaker security definitions). Finally, we dispense with the need for the expensive zero-knowledge proofs required for proving tracing correctness by the tracing authority. As a result, tracing a signature in our constructions is significantly more efficient than existing constructions, both in terms of the size of the tracing proof and the computational cost required to generate and verify it. For instance, verifying tracing correctness in our constructions requires only 4 pairings compared to 34 pairings in the most efficient existing construction

    Short structure-preserving signatures

    Get PDF
    © Springer International Publishing Switzerland 2016. We construct a new structure-preserving signature scheme in the efficient Type-III asymmetric bilinear group setting with signatures shorter than all existing schemes. Our signatures consist of 3 group elements from the first source group and therefore they are shorter than those of existing schemes as existing ones have at least one component in the second source group whose elements bit size is at least double that of their first group counterparts. Besides enjoying short signatures, our scheme is fully re-randomizable which is a useful property for many applications. Our result also consti- tutes a proof that the impossibility of unilateral structure-preserving signatures in the Type-III setting result of Abe et al. (Crypto 2011) does not apply to constructions in which the message space is dual in both source groups. Besides checking the well-formedness of the message, verifying a signature in our scheme requires checking 2 Pairing Product Equations (PPE) and require the evaluation of only 5 pairings in total which matches the best existing scheme and outperforms many other existing ones. We give some examples of how using our scheme instead of existing ones improves the efficiency of some existing cryptographic pro- tocols such as direct anonymous attestation and group signature related constructions

    Further Lower Bounds for Structure-Preserving Signatures in Asymmetric Bilinear Groups

    Get PDF
    Structure-Preserving Signatures (SPSs) are a useful tool for the design of modular cryptographic protocols. Recent series of works have shown that by limiting the message space of those schemes to the set of Diffie-Hellman (DH) pairs, it is possible to circumvent the known lower bounds in the Type-3 bilinear group setting thus obtaining the shortest signatures consisting of only 2 elements from the shorter source group. It has been shown that such a variant yields efficiency gains for some cryptographic constructions, including attribute-based signatures and direct anonymous attestation. Only the cases of signing a single DH pair or a DH pair and a vector from Zp\Z_p have been considered. Signing a vector of group elements is required for various applications of SPSs, especially if the aim is to forgo relying on heuristic assumptions. An open question is whether such an improved lower bound also applies to signing a vector of â„“>1\ell > 1 messages. We answer this question negatively for schemes existentially unforgeable under an adaptive chosen-message attack (EUF-CMA) whereas we answer it positively for schemes existentially unforgeable under a random-message attack (EUF-RMA) and those which are existentially unforgeable under a combined chosen-random-message attack (EUF-CMA-RMA). The latter notion is a leeway between the two former notions where it allows the adversary to adaptively choose part of the message to be signed whereas the remaining part of the message is chosen uniformly at random by the signer. Another open question is whether strongly existentially unforgeable under an adaptive chosen-message attack (sEUF-CMA) schemes with 2-element signatures exist. We answer this question negatively, proving it is impossible to construct sEUF-CMA schemes with 2-element signatures even if the signature consists of elements from both source groups. On the other hand, we prove that sEUF-RMA and sEUF-CMA-RMA schemes with 2-element (unilateral) signatures are possible by giving constructions for those notions. Among other things, our findings show a gap between random-message/combined chosen-random-message security and chosen-message security in this setting

    Formalizing group blind signatures and practical constructions without random oracles

    Get PDF
    Group blind signatures combine anonymity properties of both group signatures and blind signatures and offer privacy for both the message to be signed and the signer. The primitive has been introduced with only informal definitions for its required security properties. In this paper, we offer two main contributions: first, we provide foundations for the primitive and present formal security definitions. In the process, we identify and address some subtle issues which were not considered by previous constructions and (informal) security definitions. Our second main contribution is a generic construction that yields practical schemes with a round-optimal signing protocol and constant-size signatures. Our constructions permit dynamic and concurrent enrollment of new members and satisfy strong security requirements. To the best of our knowledge, our schemes are the first provably secure constructions in the standard model. In addition, we introduce some new building blocks which may be of independent interest. © 2013 Springer-Verlag

    Type 2 Structure-Preserving Signature Schemes Revisited

    Get PDF
    Abstract. Abe, Groth, Ohkubo and Tibouchi recently presented structure-preserving signature schemes using Type 2 pairings. The schemes are claimed to enjoy the fastest signature verification. By properly accounting for subgroup membership testing of group elements in signatures, we show that the schemes are not as efficient as claimed. We presen

    More Efficient Structure-Preserving Signatures - Or: Bypassing the Type-III Lower Bounds

    Get PDF
    Structure-preserving signatures are an important cryptographic primitive that is useful for the design of modular cryptographic protocols. It has been proven that structure-preserving signatures (in the most efficient Type-III bilinear group setting) have a lower bound of 3 group elements in the signature (which must include elements from both source groups) and require at least 2 pairing-product equations for verification. In this paper, we show that such lower bounds can be circumvented. In particular, we define the notion of Unilateral Structure-Preserving Signatures on Diffie-Hellman pairs (USPSDH) which are structure-preserving signatures in the efficient Type-III bilinear group setting with the message space being the set of Diffie-Hellman pairs, in the terminology of Abe et al. (Crypto 2010). The signatures in these schemes are elements of one of the source groups, i.e. unilateral, whereas the verification key elements\u27 are from the other source group. We construct a number of new structure-preserving signature schemes which bypass the Type-III lower bounds and hence they are much more efficient than all existing structure-preserving signature schemes. We also prove optimality of our constructions by proving lower bounds and giving some impossibility results. Our contribution can be summarized as follows: \begin{itemize} \item We construct two optimal randomizable CMA-secure schemes with signatures consisting of only 2 group elements from the first short source group and therefore our signatures are at least half the size of the best existing structure-preserving scheme for unilateral messages in the (most efficient) Type-III setting. Verifying signatures in our schemes requires, besides checking the well-formedness of the message, the evaluation of a single Pairing-Product Equation (PPE) and requires a fewer pairing evaluations than all existing structure-preserving signature schemes in the Type-III setting. Our first scheme has a feature that permits controlled randomizability (combined unforgeability) where the signer can restrict some messages such that signatures on those cannot be re-randomized which might be useful for some applications. \item We construct optimal strongly unforgeable CMA-secure one-time schemes with signatures consisting of 1 group element, and which can also sign a vector of messages while maintaining the same signature size. \item We give a one-time strongly unforgeable CMA-secure structure-preserving scheme that signs unilateral messages, i.e. messages in one of the source groups, whose efficiency matches the best existing optimal one-time scheme in every respect. \item We investigate some lower bounds and prove some impossibility results regarding this variant of structure-preserving signatures. \item We give an optimal (with signatures consisting of 2 group elements and verification requiring 1 pairing-product equation) fully randomizable CMA-secure partially structure-preserving scheme that simultaneously signs a Diffie-Hellman pair and a vector in Zpk\Z^k_p. \item As an example application of one of our schemes, we obtain efficient instantiations of randomizable weakly blind signatures which do not rely on random oracles. The latter is a building block that is used, for instance, in constructing Direct Anonymous Attestation (DAA) protocols, which are protocols deployed in practice. \end{itemize} Our results offer value along two fronts: On the practical side, our constructions are more efficient than existing ones and thus could lead to more efficient instantiations of many cryptographic protocols. On the theoretical side, our results serve as a proof that many of the lower bounds for the Type-III setting can be circumvented

    Efficient distributed tag-based encryption and its application to group signatures with efficient distributed traceability

    Get PDF
    In this work, we first formalize the notion of dynamic group signatures with distributed traceability, where the capability to trace signatures is distributed among n managers without requiring any interaction. This ensures that only the participation of all tracing managers permits tracing a signature, which reduces the trust placed in a single tracing manager. The threshold variant follows easily from our definitions and constructions. Our model offers strong security requirements. Our second contribution is a generic construction for the notion which has a concurrent join protocol, meets strong security requirements, and offers efficient traceability, i.e. without requiring tracing managers to produce expensive zero-knowledge proofs for tracing correctness. To dispense with the expensive zero-knowledge proofs required in the tracing, we deploy a distributed tag-based encryption with public verifiability. Finally, we provide some concrete instantiations, which, to the best of our knowledge, are the first efficient provably secure realizations in the standard model simultaneously offering all the aforementioned properties. To realize our constructions efficiently, we construct an efficient distributed (and threshold) tag-based encryption scheme that works in the efficient Type-III asymmetric bilinear groups. Our distributed tag-based encryption scheme yields short ciphertexts (only 1280 bits at 128-bit security), and is secure under an existing variant of the standard decisional linear assumption. Our tag-based encryption scheme is of independent interest and is useful for many applications beyond the scope of this paper. As a special case of our distributed tag-based encryption scheme, we get an efficient tag-based encryption scheme in Type-III asymmetric bilinear groups that is secure in the standard model

    Une classification des hypothèses calculatoire dans le modèle du groupe algébrique

    Get PDF
    International audiencea We give a taxonomy of computational assumptions in the algebraic group model (AGM). We first analyze Boyen's Uber assumption family for bilinear groups and then extend it in several ways to cover assumptions as diverse as Gap Diffie-Hellman and LRSW. We show that in the AGM every member of these families is implied by the q-discrete logarithm (DL) assumption, for some q that depends on the degrees of the polynomials defining the Uber assumption. Using the meta-reduction technique, we then separate (q + 1)-DL from q-DL, which yields a classification of all members of the extended Uber-assumption families. We finally show that there are strong assumptions, such as one-more DL, that provably fall outside our classification, by proving that they cannot be reduced from q-DL even in the AGM
    corecore