6 research outputs found

    Terranimo® – ein webbasiertes Modell zur Abschätzung des Bodenverdichtungsrisikos

    Get PDF
    Um die Druckverhältnisse unter Landmaschinen zu simulieren und das Bodenverdichtungsrisiko einschätzen zu können, wurde das webbasierte Modell Terranimo® entwickelt. Darin kann mithilfe von verfügbaren Reifenkennwerten und in Abhängigkeit von der Oberbodenfestigkeit die Kontaktfläche und die Druckverteilung zwischen Reifen und Boden beschrieben werden. Mithilfe von Pedotransferfunktionen wird die Bodenfestigkeit (Vorbelastung) vom Tongehalt und der Saugspannung im Boden abgeleitet. Das Verdichtungsrisiko wird durch den Vergleich von Bodenfestigkeit und ausgeübtem Bodendruck abgeschätzt: Bleibt der durch die Landmaschine ausgeübte Bodendruck unterhalb der aktuellen Bodenfestigkeit, so können das Verdichtungsrisiko minimiert und negative Veränderungen der Bodenstruktur – und somit der Bodenfunktionen – vermieden werden.Based on experimental data from wheeling experiments, a web-based model for the simulation of stress and the evaluation of the soil compaction risk under agricultural machinery named Terranimo® has been developed. Terranimo® incorporates a model for prediction of contact area, shape and stress distribution in the tyre soil interface from wheel load and readily-available tyre parameters and the topsoil strength. In Terranimo® pedotransfer functions are used to estimate soil strength from clay content and matric potential. Principally, by limiting the imposed stress to below soil strength, the risk of soil compaction and undesirable changes of soil structure – and hence soil functions – can be minimized

    Genetic basis of microbiome recruitment in pea roots challenged by root rot disease

    Get PDF
    Legumes play a crucial role in the shift towards more sustainable protein production, but root rot complexes can cause massive yield losses in many legume crops such as pea. The pea root rot complex (PRRC) is caused by various soil borne pathogens that likely act synergistically and influence the composition of the rhizosphere microbiome (Wille et al., 2021). As there is genotypic variation in the abundance of key PRRC taxa and disease susceptibility, we aimed to investigate the genotype effect on the root microbiome composition affecting plant health. This crucial interaction between the plant genotype and its associated microbiome, also known as the holobiont, has the potential to lead to increased resistance to PRRC

    Genetic basis of microbiome recruitment in pea roots challenged by root rot disease

    Get PDF
    Legumes play a crucial role in the shift towards more sustainable protein production, but root rot complexes can cause massive yield losses in many legume crops such as pea. The pea root rot complex (PRRC) is caused by various soil borne pathogens that likely act synergistically and influence the composition of the rhizosphere microbiome (Wille et al., 2021). As there is genotypic variation in the abundance of key PRRC taxa and disease susceptibility, we aimed to investigate the genotype effect on the root microbiome composition affecting plant health. This crucial interaction between the plant genotype and its associated microbiome, also known as the holobiont, has the potential to lead to increased resistance to PRRC

    Fördert die Mikrobendiversitätdie pflanzliche Resistenz?Mögliche Rolle von Wurzel-assoziierten Mikrobiomen bei der Züchtung

    Get PDF
    Mikroorganismen: Ein vitales und vielfältiges Bodenleben ist wichtig für eine gesunde Kultur. Die Partnerschaft mit nützlichen Mikroorganismen kann unter anderem die Widerstandsfähigkeit von Pflanzen gegen Krankheiten erhöhen. Die Züchtungsgruppe am FiBL erforscht, wie dieses Wissen bei Nutzpflanzen angewendet werden kann

    Identification of plant genotype dependent microbiome recruitment associated with disease resistance against root rot in peas

    Get PDF
    The cultivation of pea (Pisum sativum) is highly constrained by various soil-borne pathogens. Together these pathogens form a pea root rot complex (PRRC) and trigger soil fatigue. Microbiome-mediated disease resistance poses a possible mechanism to mitigate yield loss through PRRC. It is however largely unknown how the PRRC interacts with other members of the root microbiome and how this affects plant resistance. Here, we compared the root microbiome of 252 pea lines in a controlled soil-based phenotyping assay that was previously shown to predict field-relevant resistance against PRRC. Root bacteria and fungi were characterized by 16S rRNA and ITS amplicon sequencing. We analyzed alpha diversity and microbial community composition, and identified heritable hub OTUs. Based on differential abundance analysis we further identified heritable bacterial and fungal hub taxa that are associated with root rot resistance. Subsequent genome-wide association studies revealed plant genomic regions that are significantly correlated with beneficial hub taxa and overall microbial community composition. In a next step, the identified genetic markers will be used to select pea breeding material for field validation of microbiome-mediated resistance against PRRC. This work demonstrates the potential of microbiome-assisted breeding to promote sustainable farming practices
    corecore