91 research outputs found

    The Trade-off between Processing Gains of an Impulse Radio UWB System in the Presence of Timing Jitter

    Get PDF
    In time hopping impulse radio, NfN_f pulses of duration TcT_c are transmitted for each information symbol. This gives rise to two types of processing gain: (i) pulse combining gain, which is a factor NfN_f, and (ii) pulse spreading gain, which is Nc=Tf/TcN_c=T_f/T_c, where TfT_f is the mean interval between two subsequent pulses. This paper investigates the trade-off between these two types of processing gain in the presence of timing jitter. First, an additive white Gaussian noise (AWGN) channel is considered and approximate closed form expressions for bit error probability are derived for impulse radio systems with and without pulse-based polarity randomization. Both symbol-synchronous and chip-synchronous scenarios are considered. The effects of multiple-access interference and timing jitter on the selection of optimal system parameters are explained through theoretical analysis. Finally, a multipath scenario is considered and the trade-off between processing gains of a synchronous impulse radio system with pulse-based polarity randomization is analyzed. The effects of the timing jitter, multiple-access interference and inter-frame interference are investigated. Simulation studies support the theoretical results.Comment: To appear in the IEEE Transactions on Communication

    Performance Evaluation of Impulse Radio UWB Systems with Pulse-Based Polarity Randomization

    Full text link
    In this paper, the performance of a binary phase shift keyed random time-hopping impulse radio system with pulse-based polarity randomization is analyzed. Transmission over frequency-selective channels is considered and the effects of inter-frame interference and multiple access interference on the performance of a generic Rake receiver are investigated for both synchronous and asynchronous systems. Closed form (approximate) expressions for the probability of error that are valid for various Rake combining schemes are derived. The asynchronous system is modelled as a chip-synchronous system with uniformly distributed timing jitter for the transmitted pulses of interfering users. This model allows the analytical technique developed for the synchronous case to be extended to the asynchronous case. An approximate closed-form expression for the probability of bit error, expressed in terms of the autocorrelation function of the transmitted pulse, is derived for the asynchronous case. Then, transmission over an additive white Gaussian noise channel is studied as a special case, and the effects of multiple-access interference is investigated for both synchronous and asynchronous systems. The analysis shows that the chip-synchronous assumption can result in over-estimating the error probability, and the degree of over-estimation mainly depends on the autocorrelation function of the ultra-wideband pulse and the signal-to-interference-plus-noise-ratio of the system. Simulations studies support the approximate analysis.Comment: To appear in the IEEE Transactions on Signal Processin

    Time-delay estimation in multiple-input single-output systems

    Get PDF
    In this paper, the time-delay estimation problem is studied for multiple-input single-output (MISO) systems. First, a theoretical analysis is carried out by deriving the Cramer-Rao lower bound (CRLB) for time-delay estimation in a MISO system. Then, the maximum likelihood (ML) estimator for the time-delay parameter is obtained, which results in a complex optimization problem in general. In order to provide a solution of the ML estimator with low computational complexity, ML estimation based on a genetic global optimization algorithm, namely, differential evolution (DE), is proposed. Simulation studies for various fading scenarios are performed to investigate the performance of the proposed algorithm. ©2010 IEEE

    A low-cost time-hopping impulse radio system for high data rate transmission

    Full text link
    We present an efficient, low-cost implementation of time-hopping impulse radio that fulfills the spectral mask mandated by the FCC and is suitable for high-data-rate, short-range communications. Key features are: (i) all-baseband implementation that obviates the need for passband components, (ii) symbol-rate (not chip rate) sampling, A/D conversion, and digital signal processing, (iii) fast acquisition due to novel search algorithms, (iv) spectral shaping that can be adapted to accommodate different spectrum regulations and interference environments. Computer simulations show that this system can provide 110Mbit/s at 7-10m distance, as well as higher data rates at shorter distances under FCC emissions limits. Due to the spreading concept of time-hopping impulse radio, the system can sustain multiple simultaneous users, and can suppress narrowband interference effectively.Comment: To appear in EURASIP Journal on Applied Signal Processing (Special Issue on UWB - State of the Art

    Enhancements to linear least squares localization through reference selection and ML estimation

    Get PDF
    Linear least squares (LLS) estimation is a low complexity but sub-optimum method for estimating the location of a mobile terminal (MT) from some distance measurements. It requires selecting one of the fixed terminals (FTs) as a reference FT for obtaining a linear set of expressions. However, selection of the reference FT is commonly performed arbitrarily in the literature. In this paper, a method for selection of the reference FT is proposed, which improves the location accuracy compared to a fixed selection of the reference FT. Moreover, a covariancematrix based LLS estimator is proposed in line of sight (LOS) and non-LOS (NLOS) environments which further improves accuracy since the correlations between the observations are exploited. Simulation results prove the effectiveness of the proposed techniques. © 2008 IEEE

    Adaptive measurement matrix design for compressed DoA estimation with sensor arrays

    Get PDF
    In this work we consider the problem of measurement matrix design for compressed 3-D Direction of Arrival (DoA) estimation using a sensor array with analog combiner. Since generic measurement matrix designs often do not yield optimal estimation performance, we propose a novel design technique based on the minimization of the Cramér-Rao Lower Bound (CRLB). We develop specific approaches for adaptive measurement design for two applications: detection of the newly appearing targets and tracking of the previously detected targets. Numerical results suggest that the developed designs allow to provide the near optimal performance in terms of the CRLB. © 2015 IEEE
    corecore