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Abstract—In this paper, the time-delay estimation problem is
studied for multiple-input single-output (MISO) systems. First,
a theoretical analysis is carried out by deriving the Cramer-
Rao lower bound (CRLB) for time-delay estimation in a MISO
system. Then, the maximum likelihood (ML) estimator for the
time-delay parameter is obtained, which results in a complex
optimization problem in general. In order to provide a solution
of the ML estimator with low computational complexity, ML
estimation based on a genetic global optimization algorithm,
namely, differential evolution (DE), is proposed. Simulation
studies for various fading scenarios are performed to investigate
the performance of the proposed algorithm.

Index Terms— Time-delay estimation, Cramer-Rao lower
bound (CRLB), multiple-input single-output (MISO), differential
evolution (DE), maximum likelihood (ML) estimator.

I. INTRODUCTION

Facilitating wireless networks in positioning applications

besides the communications applications has been getting a

growing attention recently. There are a lot of application

areas and services that make use of positioning techniques.

The typical examples for outdoor systems are enhanced 911

(E911), improved fraud detection, cellular system design and

management, mobile yellow pages, location-based billing,

intelligent transport systems, improved transport systems, and

global positioning systems (GPS) [1], [2]. For short-range

networks and indoor positioning systems, inventory tracking,

intruder detection, tracking of fire-fighters and miners, home

automation and patient monitoring applications are examples

that employ wireless positioning techniques [3].

One classification criterion for positioning mechanisms is

the information that is used in the estimation of the location.

In direct positioning, the signals transmitted and received

between the nodes are used for calculating the location. On the

other hand, in two-step positioning, some parameters related

to the position are extracted from the signals first, and then the

position is estimated by using those parameters [4]. The time-

delay parameter is one of the most widely used ones among

these parameters, which is the focus in this study.

A multiple-input multiple-output (MIMO) system uses mul-

tiple antennas at the transmitter and the receiver in order to
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provide space diversity [5]. MIMO systems will be used very

widely in future communications systems since they provide

advantages in terms of quality, reliability, and capacity [5], [6].

MISO systems, which are special cases of MIMO systems,

have multiple antennas at the transmitter but have a single

antenna at the receiver. In this case, the space diversity can be

called as the transmit diversity.

Since positioning is an important application area of wire-

less systems, it is important to quantify the advantages of space

diversity for positioning applications. Although the advantages

of space diversity are investigated thoroughly for communica-

tions purposes [7] and radar systems [8], [9], [10], there are

a few studies in the literature that investigate the effects of

space diversity for positioning purposes. For example, [11]

studies the space diversity that can be obtained via the use

of multiple receive antennas. Mainly, it obtains the theoretical

limits, in terms of the Cramer-Rao lower bound (CRLB), on

range (equivalently, time-delay) estimation, and proposes a

two-step asymptotically optimal range estimator.

Although the effects of receive diversity are studied in [11],

no studies have quantified the effects of transmit diversity for

time-delay estimation and investigated optimal estimation. In

this paper, the time-delay estimation problem in MISO systems

is analyzed. First, the signal model is constructed in Section

II. Then, the maximum likelihood (ML) time-delay estimator

is provided and a theoretical analysis is performed in Section

III by deriving the CRLB on time-delay estimation in a MISO

system. In Section IV, a genetic global optimization algorithm,

called differential evolution (DE), is used to estimate the time-

delay parameter from the ML estimator formulation. In that

way, the theoretical bound can be achieved at high signal-to-

noise ratios (SNRs) with a significantly lower computational

complexity than the direct solution of the ML estimator via an

exhaustive search. In DE, a number of parameter vectors are

generated and updated at each generation in order to reach the

global optimum [12], and these vectors encounter mutation,

crossover, and selection steps at each generation [13]. Finally,

simulation results are presented and concluding remarks are

made.

II. SIGNAL MODEL

Consider a MISO system with M antennas at the transmitter

and a single antenna at the receiver, as shown in Fig. 1.
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Fig. 1. A MISO system with M transmit antennas.

The baseband received signal at the receiver antenna can be

modeled as follows:

r(t) =

M
∑

i=1

αisi(t − τ) + n(t) , (1)

where αi = aie
jφi is the channel coefficient of the ith

transmitter branch, τ is the time-delay, si(t) is the baseband

representation of the transmitted signal from the ith transmit

antenna, and n(t) denotes the complex additive white Gaussian

noise with independent components each having zero mean

and spectral density σ2.

For the signal model in (1), it is assumed that the signals

s1(t), . . . , sM (t) are narrowband signals, and the differences

in the time-delays of the signals coming from different anten-

nas are very small compared to the duration of the signals.

Hence, the time-delay parameter can be modeled by a single

parameter τ as in (1). In addition, the transmit antennas are

assumed to be separated sufficiently (on the order of signal

wavelength) in such a way that the channel coefficients for

signals coming from different antennas are independent, which

is the main source of transmit diversity in the system.

III. THEORETICAL LIMITS

The time-delay estimation problem involves the joint esti-

mation of τ and the other unknown parameters of the received

signal in (1). The unknown signal parameters are denoted by

vector λ that is expressed as

λ =
[

τ a1 · · · aM φ1 · · · φM

]

. (2)

If the received signal is observed over the time interval

[0, T ], then the log-likelihood function for λ can be expressed

as [14]

Λ(λ) = k −
1

2σ2

∫ T

0

∣

∣

∣

∣

∣

r(t) −

M
∑

i=1

αisi(t − τ)

∣

∣

∣

∣

∣

2

dt , (3)

where k is a term independent of λ.

After some manipulation, we obtain the Fisher information

matrix (FIM) [14] from (3) as

I =





Iττ Iτa Iτφ

I
T
τa Iaa Iaφ

I
T
τφ I

T
aφ Iφφ



 , (4)

where the submatrices of the FIM are given by1

Iττ = E

{

(

∂Λ(λ)

∂τ

)2
}

=
1

σ2

∫ T

0

∣

∣

∣

∣

∣

M
∑

i=1

αis
′

i(t − τ)

∣

∣

∣

∣

∣

2

dt =
Ês

σ2
, (5)

[Iaa]kk = E

{

(

∂Λ(λ)

∂ak

)2
}

=
1

σ2

∫ T

0

|sk(t − τ)|
2

dt =
Ek

σ2
, (6)

[Iaa]kn = E

{

∂Λ(λ)

∂ak

∂Λ(λ)

∂an

}

=
Pk,n

σ2
, if k 6=n , (7)

[Iφφ]kk = E

{

(

∂Λ(λ)

∂φk

)2
}

=
a2

k

σ2

∫ T

0

|sk(t − τ)|
2

dt =
a2

kEk

σ2
, (8)

[Iφφ]kn = E

{

∂Λ(λ)

∂φk

∂Λ(λ)

∂φn

}

=
Rk,n

σ2
, if k 6=n (9)

[Iτa]k = E

{

∂Λ(λ)

∂τ

∂Λ(λ)

∂ak

}

=
−Fk

σ2
, (10)

[Iτφ]k = E

{

∂Λ(λ)

∂τ

∂Λ(λ)

∂φk

}

=
−Gk

σ2
, (11)

[Iaφ]kk = E

{

∂Λ(λ)

∂ak

∂Λ(λ)

∂φk

}

= 0 , (12)

[Iaφ]kn = E

{

∂Λ(λ)

∂ak

∂Λ(λ)

∂φn

}

=
−Hk,n

σ2
, if k 6=n (13)

with

Ek ,

∫ T

0

|sk(t − τ)|
2

dt , (14)

Ês ,

∫ T

0

∣

∣

∣

∣

∣

M
∑

i=1

αis
′

i(t − τ)

∣

∣

∣

∣

∣

2

dt , (15)

Pk,n ,

∫ T

0

Re
{

s∗k(t − τ)sn(t − τ)ej(φn−φk)
}

dt , (16)

1[X]kn denotes the element of matrix X in row k and column n.
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Rk,n ,

∫ T

0

Re {α∗

kαns∗k(t − τ)sn(t − τ)} dt , (17)

Fk ,

∫ T

0

Re

{

e−jφks∗k(t − τ)

M
∑

i=1

αis
′

i(t − τ)

}

dt , (18)

Gk ,

∫ T

0

Im

{

α∗

ks∗k(t − τ)

M
∑

i=1

αis
′

i(t − τ)

}

dt , (19)

and

Hk,n ,

∫ T

0

Im
{

anej(φn−φk)s∗k(t − τ)sn(t − τ)
}

dt .

(20)

Since the CRLB for the time-delay parameter is given by

the first element of the inverse of the FIM, namely,
[

I
−1

]

11
,

the expressions above should be used to obtain the result

numerically in general. However, under certain assumptions,

closed-form CRLB expressions can be obtained as shown

below.

Assumption 1: Assume
∫ T

0
s∗k(t)s′n(t) dt = 0 for ∀k 6= n.

Under this assumption, Iτa and Iτφ become 0. Then, the

CRLB for τ becomes

CRLB =
[

I
−1

]

11
=

σ2

Ês

. (21)

Assumption 2: Assume
∫ T

0
sk(t)s∗n(t) dt = 0 for ∀k 6= n

(orthogonality condition).

Under this assumption, (7), (9), and (13) become zero.

For an arbitrary matrix E =

[

A B

C D

]

,
[

E
−1

]

M×M
= (A-

BD
−1

C)−1, where A is an M -by-M matrix. If applied to

the FIM provided in (4) as

A = Iττ , (22)

B =
[

Iτa Iτφ

]

, (23)

C = B
T , (24)

D =

[

Iaa Iaφ

I
T
aφ Iφφ

]

, (25)

then the CRLB; that is, [I−1]11, can be calculated as follows:

CRLB =

(

Iττ −
[

Iτa Iτφ

]

[

Iaa Iaφ

I
T
aφ Iφφ

] [

I
T
τa

I
T
τφ

])−1

=

(

Ês

σ2
−

1

σ2

M
∑

k=1

F 2
k

Ek
−

1

σ2

M
∑

k=1

G2
k

Eka2
k

)−1

=
σ2

Ês −
∑M

k=1

(

F 2

k
a2

k
+G2

k

Eka2

k

) . (26)

The CRLB must be minimized in order to maximize the

time-delay estimation accuracy. From (21) and (26), it is

observed that the maximization of Ês in (15) is critical in order

to achieve the minimum CRLB. In order to provide intuition

about how space diversity can be achieved in MISO systems,

consider the following two cases:

• If si(t) = s(t) for all i, then Ês will reduce to

Ês =

∣

∣

∣

∣

∣

M
∑

i=1

αi

∣

∣

∣

∣

∣

2
∫ T

0

|s′(t − τ)|
2

dt = |α|2Ê (27)

where α =
∑M

i=1 αi and Ê =
∫ T

0
|s′(t − τ)|2 dt. It is

observed that when the signals are selected to be equal

to each other, then Ês can be undesirably small due to

fading and result in a large CRLB. In this case, no space

diversity is available in the system.

• If s′i(t)’s are orthogonal to each other, then

Ês =

∫ T

0







M
∑

i=1

M
∑

j=1

αiα
∗

js
′

i(t − τ)s′∗j (t − τ)







dt

=
M
∑

i=1

|αi|
2

∫ T

0

|s′i(t − τ)|
2

dt =

M
∑

i=1

|αi|
2Êi (28)

where Êi =
∫ T

0
|s′i(t − τ)|

2
dt. In this case, the signals

are selected so that their derivatives are orthogonal. Such

a signal design results in a more robust CRLB by utilizing

the transmit diversity in the system. Specifically, even

if some of the signals are under deep fades, the other

signals can still have reasonably large channel coefficients

and can provide a reasonably large Ês value. Hence,

the CRLB will stay reasonably low, which means that

accurate time-delay estimation can still be possible in

those scenarios. Therefore, the space diversity is utilized

in that case.

IV. ML ESTIMATION BASED ON DIFFERENTIAL

EVOLUTION

A. ML Estimator

From (3), the maximum likelihood (ML) estimator for λ

can be obtained as

Λ(λ) = arg max
λ

∫ T

0

{

r(t)

M
∑

i=1

α∗

i s
∗

i (t − τ)+ (29)

r∗(t)

M
∑

i=1

αisi(t − τ) −

M
∑

i=1

αisi(t − τ)

M
∑

i=1

α∗

i s
∗

i (t − τ)

}

dt

Under certain conditions, the ML estimator achieves the

CRLB asymptotically [14]. However, an exhaustive search

approach to find the ML solution for this estimation problem

introduces tremendous computational overhead in the presence

of multiple transmit antennas. Therefore, there exists a need

for finding an algorithm that will obtain the ML solution

(approximately) with a low computational load. For that pur-

pose, first, the particle swarm optimization (PSO) approach is

tested, which is a renown global optimization algorithm [15].

Despite the general success of the algorithm, it occasionally

gets trapped in local minima and does not provide similar

results on different trials for the time-delay estimation in

MISO systems. Such a problem of PSO is also highlighted
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in [16], and it is also mentioned that DE is more efficient and

robust than PSO in certain cases.

B. Differential Evolution (DE)

DE is a global optimization algorithm with simplicity, reli-

ability, and high performance features. It is proposed by Storn

and Price [17], and intended especially for usage in continuous

optimization [18]. It is similar to the evolutionary algorithms,

but in terms of the new candidate set generation and selection

scheme, it differs from them. It does not recombine the

solutions using probabilistic schemes but uses the differences

of the population members [18]. The basic steps of DE are as

follows [13], [16], [18]:

• Initialization: For a global optimization problem with D
parameters, a population comprised of NP individuals,

which are D-dimensional vectors, is generated. The indi-

viduals are uniformly distributed all over the optimization

space. At each generation, the population is updated

according to the update rules used in the next steps. (The

parameter vectors at generation G are denoted by xi,G

for i = 1, 2, . . . , NP .)

• Mutation: In this step, for each individual (target vector

(xi,G)), three more individuals (xr1,G, xr2,G, xr3,G) are

randomly selected from the population so that all of the

four individuals are different from each other. Then, a

mutant vector vi,G+1 is generated using xr1,G, xr2,G,

xr3,G in the following way:

vi,G+1 = xr1,G + F (xr2,G − xr3,G) (30)

where F is the amplification factor of the differential

variation (xr2,G − xr3,G). Since the search is based on

the difference between the individuals, at the beginning of

the evolution, the search is distributed all over the search

space. However, as the evolution continues, the search is

concentrated in the neighborhood of the possible solution.

As the difference between the individuals decreases, the

step-size is automatically adapted to this situation and

decreased.

• Crossover: A crossover between the target vector and the

mutant vector is done, which means the elements of them

are mixed according to the following rule:

uj,i,G =

{

vi,G+1 , if rand(0, 1) < CR

xi,G , otherwise
, (31)

where CR is the crossover probability for each element

of uj,i,G. If CR is 0, then no crossover is performed,

which means that all of the elements of uj,i,G are taken

from the target vector xi,G. Conversely, if CR is 1, then

the mutant vector is copied directly to uj,i,G.

• Selection: The decision on the new population member

is done greedily in DE. If uj,i,G has a better cost

function value than xi,G, then uj,i,G takes place of xi,G

in generation G + 1. If the reverse is valid, then xi,G

retains its place in the next generation.

This is the standard version of DE, which is also known

as “DE/rand/1”. The general notation for representing the DE

variants is “DE/x/y”, where “x” denotes the selection method

of the target vector and “y” denotes the number of difference

vectors used. In the standard version, the target vector is

chosen randomly, hence “x” is “rand”. There is only one

difference vector (xr2,G − xr3,G) used for improvement of

the evolution, hence “y” is “1” [13], [18]. There are many

variants of DE proposed in the literature, such as “DE/best/1”,

“DE/cur-to-best/1”, “DE/best/2”, “DE/rand/2”, and “DE/rand-

to-best/2” [19].

There are three parameters of DE as can be observed above.

They are the crossover probability (CR), the amplification

factor for the differential variation (F ), and the population

size (NP ). Finding the correct settings of these parameters

for a given problem may be a difficult and non-intuitive

task [18]. Additionally, different problems may have very

different parameter settings [20]. According to the No Free

Lunch Theorems, if an algorithm performs well in some set

of optimization problems, then it will perform badly for the

other set of problems which means some other algorithms will

perform well for the second set [21]. The reflection of this

concept to the parameter setting problem of DE is finding

different parameters that work well for different problems.

Although it is hard to find the optimum parameters for

an arbitrary problem and general rules for these parameters,

there are many studies on the parameter setting problem in

DE. For example, in [12], it is suggested to use 10 times the

dimensionality as the population size (NP ). Increasing the

population size will result in a more explorative and slower

algorithm. In our trials on DE parameters, it is seen that

with population size 50, which is 10 times the dimensionality

of the problem (5 dimensions for two transmit antenna), the

algorithm is not as successful as in the case of the population

size of 100. Therefore, 100 is preferred in this study. Generally,

the recommendation for the CR value is 0.9 [22], [23]. So, we

used 0.9 in our study. For the amplification factor (F ), there are

many recommended values. But, they are generally between

0.5 and 1 [22]. The best performance in this optimization

problem is obtained when F is selected as 0.5.

The stopping criterion for the algorithm is selected as the

iteration count. Although it is observed that 100-150 iterations

are generally sufficient, to be on the safe side, the iteration

count is selected as 200.

V. SIMULATION RESULTS

In this section, simulations performed by using the DE

algorithm studied in Section IV are provided. The performance

of DE is compared with the theoretical limit (CRLB) under

different simulation scenarios. In the simulations, for si(t), the

modified Hermite pulses (MHPs) are used [24], [25]. s1(t) is

the second order MHP and s2(t) is the third order MHP; that

is,

s1(t) =
e−t2/4β2

β2

(

t2

β2
− 1

)

, (32)
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Fig. 2. The RMSE of the MLE and the square-root of the CRLB for the
Rayleigh fading channel.

s2(t) =
e−t2/4β2

β4

(

t3

β2
− 3t

)

, (33)

where β is the parameter used for adjusting the pulse according

to a given pulse width (PW ). It is selected as PW/15 in

the simulations. The MHPs are selected because of their

orthogonality property. Since the orthogonality property of

the signals satisfy Assumption 2 provided in Section III, the

results of the simulations are compared to the square-root of

the CRLB (theoretical bound) calculated under this assump-

tion. The derivatives of the MHPs are also approximately

orthogonal; hence, the space diversity explained in Section

III is present. The ML estimator reaches the theoretical bound

under certain conditions. However, it is computationally very

complex to obtain the exact ML solution via an exhaustive

search compared to the ML solution by using DE. The simu-

lations depict the performance of the DE based ML solution

for different channel conditions.

The first simulation is performed under a Rayleigh fading

channel condition, and the results are illustrated in Fig. 2. For

Rayleigh fading, the amplitudes of the channel coefficients

(αi = aie
jθi) can differ significantly. Therefore, the utilization

of diversity is very important in this scenario. In the figure, the

SNR of the system is defined as SNR = 10 log10

(

E/(2σ2)
)

,

where E is the energy of the signal transmitted from one

antenna. The channel coefficients (ai) are Rayleigh distributed

random variables with an average power of unity ( E{a2
i } = 1 )

and φi’s are distributed as uniform random variables in the

interval [0, 2π). The time-delay τ is generated according

to uniform distribution over the observation interval. The

bandwidths of the signals are set to B = 1 MHz. The root

mean-squared error (RMSE) is calculated over many channel

realizations and this is compared to the square-root of the

CRLB.

The second simulation investigates the performance of the
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2
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S
E
 (
m
.)

MLE
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Fig. 3. The RMSE of the MLE and the square-root of the CRLB for the
Rician fading channel (K = 5).

DE based ML algorithm under Rician fading with a K factor

of 5. The SNR definition, the average power of the channel

coefficients, and the distribution of ai’s and φi’s are the

same as in the previous simulations. Fig. 3 illustrates the

performance of the algorithm in this scenario. Again, it is

observed that the RMSE of the estimator converges to the

CRLB at high SNRs, and the space diversity introduced by the

transmit antennas is utilized. Also, comparison of Fig. 2 and

Fig. 3 reveals that the RMSE of the DE based ML algorithm

is lower for the Rician fading channel, which is expected since

Rician fading corresponds to a less severe channel condition

than Rayleigh fading. In addition, the RMSE of the estimator

converges to the CRLB at lower SNRs in the Rician fading

scenario.

VI. CONCLUDING REMARKS

The CRLB is the theoretical limit that provides the lower

bound on the variance of an unbiased estimator. In this

paper, the CRLB expressions have been calculated for MISO

systems. The ML estimator achieves the CRLB under certain

conditions; however, it can have very high computational

complexity. To avoid this, a genetic global optimization al-

gorithm has been used to obtain the ML estimate with lower

computational complexity. It has been observed that DE can

find the ML estimate much more rapidly than the exhaustive

search method, and that the parameters of DE are crucial in

terms of obtaining the optimum point that maximizes the log-

likelihood function. The optimum parameter values have been

selected for DE and applied in the algorithm.

In addition, this study has emphasized the importance of

space diversity for the time-delay estimation problem in MISO

systems. It has been stated that the transmit diversity can be

utilized by using signals with orthogonal derivatives.

Finally, the performance of DE has been tested under

various channel conditions. It has been observed that the DE

204



based ML algorithm converges to the CRLB at lower SNRs

in the Rician fading channel than in the Rayleigh fading one.

However, in both of the scenarios, the algorithm reaches the

CRLB at sufficiently high SNRs by utilizing the transmit

diversity, with much lower computational complexity than the

ML estimator via an exhaustive search.
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