5,401 research outputs found

    Dynamical stabilization of classical multi electron targets against autoionization

    Get PDF
    We demonstrate that a recently published quasiclassical M\oller type approach [Geyer and Rost 2002, J. Phys. B 35 1479] can be used to overcome the problem of autoionization, which arises in classical trajectory calculations for many electron targets. In this method the target is stabilized dynamically by a backward--forward propagation scheme. We illustrate this refocusing and present total cross sections for single and double ionization of helium by electron impact.Comment: LaTeX, 6 pages, 2 figures; submitted to J. Phys.

    Entropic effects in large-scale Monte Carlo simulations

    Get PDF
    The efficiency of Monte Carlo samplers is dictated not only by energetic effects, such as large barriers, but also by entropic effects that are due to the sheer volume that is sampled. The latter effects appear in the form of an entropic mismatch or divergence between the direct and reverse trial moves. We provide lower and upper bounds for the average acceptance probability in terms of the Renyi divergence of order 1/2. We show that the asymptotic finitude of the entropic divergence is the necessary and sufficient condition for non-vanishing acceptance probabilities in the limit of large dimensions. Furthermore, we demonstrate that the upper bound is reasonably tight by showing that the exponent is asymptotically exact for systems made up of a large number of independent and identically distributed subsystems. For the last statement, we provide an alternative proof that relies on the reformulation of the acceptance probability as a large deviation problem. The reformulation also leads to a class of low-variance estimators for strongly asymmetric distributions. We show that the entropy divergence causes a decay in the average displacements with the number of dimensions n that are simultaneously updated. For systems that have a well-defined thermodynamic limit, the decay is demonstrated to be n^{-1/2} for random-walk Monte Carlo and n^{-1/6} for Smart Monte Carlo (SMC). Numerical simulations of the LJ_38 cluster show that SMC is virtually as efficient as the Markov chain implementation of the Gibbs sampler, which is normally utilized for Lennard-Jones clusters. An application of the entropic inequalities to the parallel tempering method demonstrates that the number of replicas increases as the square root of the heat capacity of the system.Comment: minor corrections; the best compromise for the value of the epsilon parameter in Eq. A9 is now shown to be log(2); 13 pages, 4 figures, to appear in PR

    Coordinate Singularities in Harmonically-sliced Cosmologies

    Get PDF
    Harmonic slicing has in recent years become a standard way of prescribing the lapse function in numerical simulations of general relativity. However, as was first noticed by Alcubierre (1997), numerical solutions generated using this slicing condition can show pathological behaviour. In this paper, analytic and numerical methods are used to examine harmonic slicings of Kasner and Gowdy cosmological spacetimes. It is shown that in general the slicings are prevented from covering the whole of the spacetimes by the appearance of coordinate singularities. As well as limiting the maximum running times of numerical simulations, the coordinate singularities can lead to features being produced in numerically evolved solutions which must be distinguished from genuine physical effects.Comment: 21 pages, REVTeX, 5 figure

    A quasi classical approach to fully differential ionization cross sections

    Get PDF
    A classical approximation to time dependent quantum mechanical scattering in the M\o{}ller formalism is presented. Numerically, our approach is similar to a standard Classical-Trajectory-Monte-Carlo calculation. Conceptually, however, our formulation allows one to release the restriction to stationary initial distributions. This is achieved by a classical forward-backward propagation technique. As a first application and for comparison with experiment we present fully differential cross sections for electron impact ionization of atomic hydrogen in the Erhardt geometry.Comment: 6 pages, 2 figure
    • …
    corecore