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Abstract 

Mass spectrometry is the main analytical technique currently used to address the challenges of 

glycomics as it offers unrivalled levels of sensitivity and the ability to handle complex mixtures 

of different glycan variations. Determination of glycan structures from analysis of MS data is a 

major bottleneck in high-throughput glycomics projects, and robust solutions to this problem are 

of critical importance. However, all the approaches currently available have inherent restrictions 

to the type of glycans they can identify and none of them has proved to be a definitive tool for 

glycomics.  

GlycoWorkbench is a software tool developed by the EUROCarbDB initiative to assist the 

manual interpretation of MS data. The main task of GlycoWorkbench is to evaluate a set of 

structures proposed by the user by matching the corresponding theoretical list of fragment masses 

against the list of peaks derived from the spectrum.  The tool provides an easy to use graphical 

interface, a comprehensive and increasing set of structural constituents, an exhaustive collection 

of fragmentation types, and a broad list of annotation options. The aim of GlycoWorkbench is to 

offer complete support for the routine interpretation of MS data. The software is available for 

download from: http://www.eurocarbdb.org/applications/ms-tools.  

Keywords: (semi-) automated annotation / glycan structure analysis / mass spectrometry 
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1. Introduction 

Carbohydrates are ubiquitous biological molecules and their roles in living organisms are varied 

and fundamental. Complex carbohydrates (also referred as glycans) are usually synthesized by 

sequential attachment of saccharide donors to a growing carbohydrate acceptor by specific 

enzymes. These monosaccharide units are covalently linked by glycosidic bonds, either in α or β 

configuration depending on the orientation of the anomeric centers. Glycans can have complex 

structures with multiple branching points, since each hydroxyl group of a monosaccharide 

constitutes a possible point of formation for a glycosidic bond. Further modifications of the basic 

monosaccharide unit at the various hydroxyl positions, such as substitution of the proton with 

other moieties or de-oxygenation, contribute to the structural complexity. 

Glycans can be found as polymers made up exclusively of sugar residues but are usually 

observed in glycoconjugates, associated with other biomolecules such as lipids or proteins. Three 

main types of protein glycosylation exist: the carbohydrate can either be linked to the amide 

nitrogen atom of an asparagine residue (N-linked glycosylation), to the hydroxyl oxygen of a 

serine, threonine or hydroxyproline residue (O-linked glycosylation) or to the C-terminal amino-

acid (GPI-linked).  

Glycans can have structural and modulatory functions by themselves or can modulate the 

function of the molecules to which they are attached by the specific recognition of the glycan 

structure by carbohydrate-binding proteins. Glycans regulate both the folding and degradation of 

proteins. Moreover, since the outer cell membrane is covered by carbohydrates, they mediate 

interactions with other cells of the same organism or with pathogenic organisms such as viruses, 

bacteria and multi-cellular parasites. Glycans are increasingly implicated in playing a critical role 

in human diseases and their potential utility as biomarkers for pathological conditions is a major 
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driver for characterization of the glycome, the collection of all glycoconjugates synthesized by an 

organism. 

1.1. Mass Spectrometry of Glycans 

Mass spectrometry is the main analytical technique currently used to address the challenges of 

glycomics as it offers unrivalled levels of sensitivity and the ability to handle the complex 

mixtures of different glycan variations1. Modern MS techniques are capable of producing mass 

spectra of both the whole glycan (molecular ion) and the fragmented glycan (fragment ions). The 

high level of sequence information contained in the fragment ion spectra can be exploited to 

resolve the structure of a glycan molecule. Fragmentation by post-source decay (PSD)2, high 

energy collision induced dissociation (CID)3, infra-red lasers (IRMPD)4 etc, involves the 

cleavage of one or more bonds in the glycan molecule. A popular nomenclature for identifying 

the various types of cleavages has been devised by Domon and Costello5 and it is shown in 

Figure 1. The most common type of fragment produced in MS instrumentation6 involves the 

cleavage of a glycosidic bond with the production of an ion that can maintain (Y and Z 

fragments) or not (B and C) the reducing-end of the original glycan. High energy collisions in the 

CID chamber of the MS instrument can also induce the breakage of the saccharide ring provoked 

by the cleavage of two bonds. The fragments resulting from these cross-ring cleavages can either 

maintain the reducing-end (X) or not (A). 

The correct interpretation of glycan fragment ion mass spectra is fundamental to the 

determination of the glycan structure, just as the interpretation of peptide fragment ion mass 

spectra is fundamental to protein identification in proteomic experiments. However, the 

additional complexity of glycan structures compared to protein sequences poses greater difficulty 

during the analytical process. The monosaccharide units often have the same chemical 
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constitution, differing only in the stereochemistry of the hydroxyl groups, and cannot be 

distinguished by their mass. Moreover, detection of the linkage positions between monomers is 

dependent on the presence of specific cross-ring fragments which are not always produced. 

Therefore, other types of information such as knowledge of glycan biosynthetic pathways are 

usually incorporated during a complete structure assignment. 

1.2. Automated Interpretation of Mass Spectrometry Data 

Determination of glycan structures from analysis of MS data is a major bottleneck in high-

throughput glycomics projects, and robust solutions to this problem are of critical importance. 

Therefore, it is not surprising that various experimentally oriented groups have been developing 

software solutions and algorithms to bypass this bottleneck. However, the current status of tools 

to analyze glycan MS data shows that automated interpretation of mass spectrometric data is still 

an evolving field. Up to now only a few software tools have been available to support 

experimentalists during the annotation process, and the capability of these tools is somewhat 

varied.  

Library-based sequencing tools identify the glycan sequence by matching the unassigned mass 

spectra with data derived from known glycan structures. Similarly to the SEQUEST7 method 

used for protein sequencing, GlycosidIQ8 generates a theoretical peak list for each structure in the 

database by computing all its theoretical fragments. The best match between the theoretical peak 

lists and the mass spectra is then derived using a suitable scoring function. A totally different 

approach to library-based sequencing is through matching the unassigned spectra against a library 

of experimentally determined fragment spectra9. Both approaches are severely limited by the 

availability of reliable data, since no comprehensive and well curated collection of 
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experimentally derived glycan sequences exists at the moment, and no public collection of 

assigned MSn spectra from pure glycans is available.  

De novo sequencing tools are not restricted to previously characterized structures but, of the 

many approaches that have been proposed, no single one has demonstrated the capability to 

deliver the desired accuracy and flexibility. Composition analysis tools, such as GlycoMod10 and 

Glyco-Peakfinder11, use data from single mass spectrometry measurements to estimate the 

quantities and classes of monosaccharide components of the glycan structure. The number of 

compositions matching a certain mass value scales exponentially with the number of different 

monomers that can form the solution; therefore taxonomic and biosynthetic information must be 

used to restrict the number of results. An innovative step in this direction has been taken by the 

Cartoonist tool12, which generates only the N-linked glycans possibly synthesized by mammalian 

cells using a set of archetypal structures and a set of rules for the modification of said structures. 

The archetypes and rules have been compiled by a group of experts, and represent the current 

knowledge about biosynthetic pathways in mammalian organisms. Eventually, the multiple 

possibilities resulting from a composition analysis need to be validated by tandem mass 

spectrometry experiments.  

Several approaches to de-novo sequencing have been proposed using data from MSn 

fragmentation experiments for deriving the complete structure. STAT13 generates all the possible 

structural topologies from a composition selected by the user amongst those compatible with the 

precursor mass. The structures thus produced are evaluated against the given peak list, and 

ranked accordingly. Like STAT, Oscar14 generates candidate structures from an estimated 

composition but uses the information contained in fragmentation pathways of permethylated 

oligosaccharides as a basis for restricting the set of possible results, which must contain the 
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common N-glycan mammalian core (Man3GlcNAc2). In StrOligo15, the differences between 

fragment masses are used to estimate the loss of known moieties and to produce a candidate 

composition for the precursor ion. Given the estimated composition, a set of structures is 

generated by applying biosynthetic rules specific to mammalian N-glycans. GLYCH16 is derived 

from de novo peptide sequencing programs by allowing branches in the polymer structure (only 

binary branching is considered).  The GLYCH algorithm performs a maximization of the number 

of assigned peaks by generating a series of B-ions starting from the leaves of the glycan tree 

structure. The complete structure is generated from the top-level B-ion by re-ranking the top 

scoring results according also to double cleavages.   

1.3. Computer Assisted Interpretation of MS Data 

All the approaches described in the previous section have inherent restrictions to the type of 

glycans they can identify and none of them has proved to be a definitive tool for glycomics. 

Expert knowledge about glycan biosynthesis is fundamental for the correct interpretation of a 

spectrum in order to restrict the number of solutions matching experimental data and to obtain 

reasonable results. Unfortunately, this information is not yet available in the form of 

comprehensive data collections, which makes completely automated annotation of generic glycan 

mass spectra still an unfeasible task.  

The EUROCarbDB design study17 aims to close this gap by creating the foundations for 

databases and bioinformatic tools in the realm of glycobiology and glycomics. The importance of 

the EUROCarbDB initiative in the development of glycan structure databases has been widely 

recognized18, 19. The EUROCarbDB project is currently establishing the technical infrastructure 

for a glycan database where all interested research groups could feed in their primary data, and it 

is already providing tools to aid the interpretation of these data. 
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GlycoWorkbench is a software tool developed by the EUROCarbDB initiative to assist the 

manual interpretation of MS data. Manual annotation of fragment spectra comprises a series of 

tedious and repetitive steps whose automation is straightforward, and can result in a substantial 

decrease of the time needed for sequencing a structure. Like other semi-automatic sequencing 

tools20, 21, the main task of GlycoWorkbench is to evaluate a set of structures proposed by the user 

by matching the corresponding theoretical list of fragment masses against the list of peaks 

derived from the spectrum. Unlike any other semi-automatic tool, GlycoWorkbench provides an 

integrated environment with an easy to use graphical interface, a comprehensive and increasing 

set of structural constituents, an exhaustive collection of fragmentation types, and a broad list of 

annotation options.  

GlycoWorkbench incorporates an intuitive visual editor of glycan structures, the GlycanBuilder22, 

that enables a rapid assembly of structure models using a comprehensive collection of building 

blocks, and their display in several popular symbolic notations. The in-silico fragmentation 

engine computes a complete list of theoretical fragments including multiple glycosidic cleavages 

and all the possible ring fragments for every available type of monosaccharide. The annotation 

engine automatically matches the theoretical list of fragment masses with the experimental peak-

list by taking into account several types of experimental techniques, various types and quantities 

of ion adducts, and neutral exchanges. The proposed annotations are presented using 

comprehensive and easily understandable reports that allow the determination of the correct 

structure by comparing the quality and the coverage of the different annotations from the 

structure candidates. The aim of GlycoWorkbench is to provide a complete support to the routine 

interpretation of mass spectrometric data and to form the basis for the development of a 

completely automatic assignment tool. The software is publicly available for download from the 
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EUROCarbDB website23. The features of the tool will be explained in more detail in the 

following sections. 

2. Material and methods 

GlycoWorkbench features a user friendly graphical interface designed to simplify and accelerate 

the routine steps performed during interpretation of a mass spectra. The typical semi-automatic 

annotation workflow involves: definition of the candidate structures, specification of the peak 

list, computation of fragments and relative mass to charge values, and annotation of peaks. All 

data produced with the tool, such as structures, peak-lists and annotations, can be printed or saved 

to file for later consultation. 

2.1. Input and Display of Structures 

Each intact or fragmented molecule is modeled in GlycoWorkbench as a tree structure whose 

nodes represent: monosaccharides, monosaccharide modifications, glycosidic or cross-ring 

cleavages, and reducing-end specificators or markers. The linkages between the monosaccharides 

are represented by the edges of the tree. Reducing-end specificators are used to identify possible 

modifications at the reducing-end terminal (e.g. reduction, fluorescent markers or no 

modification).  Each node has a connection to a distinct parent node except those who describe 

unspecified linkages at the non-reducing end(s) of a glycan structure. A special node with no 

parents is defined for collecting glycan terminals with unspecified linkages.  

The branching of constituents of a glycan molecule does not allow the input of the structure as 

straightforwardly as writing the linear sequence of amino-acids of a peptide chain. Additionally, 

numerous alternative notations are commonly adopted to graphically represent glycan structures 

and fragments. A user friendly input/output tool for glycan structures should provide an intuitive 

interface to build structures with minimal user interaction and create conventional and 
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informative graphical representations of glycans. GlycoWorkbench uses the GlycanBuilder tool22 

for visualizing and editing the candidate structures in the main drawing canvas (Figure 2), and for 

displaying the fragments in the annotation panels.  

The GlycanBuilder tool is based on an automatic rendering algorithm that generates the 

monosaccharide symbolic or textual representations and determines their arrangement in the 

drawing panel. The most commonly used symbolic representation for glycans from the 

Consortium for Functional Glycomics24 is available together with other less favored variations 

such as that utilized by the Oxford Glycobiology Institute25. The aspect and placement of residues 

and linkages is decided by a configurable set of rules specific for each notation. The flexibility of 

the rendering algorithm enables GlycanBuilder to be employed as an easy-to-use editor for 

defining structures as well as a component for the generation of pictorial representations of 

glycans and fragments.  

Using GlycanBuilder, a glycan can be rapidly specified starting from the reducing end by 

sequentially adding monosaccharides, modifications or reducing-end markers to the already 

drawn structure. Each addition is performed by selecting the point of attachment and the type of 

the new residue. The list of structural constituents contains a comprehensive collection of 

monosaccharides, substituents, reducing-end markers and monosaccharide modifications (see 

Table 1, Table 2 and Table 3 for the complete list). Additionally, a library of biologically relevant 

structural motifs (comprising both cores and terminals) is included to facilitate the input of 

structures. All stereo-chemical information about a monosaccharide (anomeric conformation, 

chirality, ring size, and linkage position) can be subsequently specified. Finally, the usual editing 

functions (cut & copy, undo/redo and drag & drop) are provided. 
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Structural data can be imported into the drawing panel from various encoding formats in use by 

existing databases initiatives, such as: LINUCS26 used by the Glycosciences.de27 portal, the 

format devised by GlycoMinds Ltd28 used by the Consortium for Functional Glycomics29 and 

Glyco-CT30 developed by the EUROCarbDB initiative17. In this way structures that are already 

defined and stored in a database can be easily tested against the acquired spectra.  

2.2. Computation of Masses 

Each candidate structure defined in GlycoWorkbench is associated with a set of parameters that 

specifies the type of per-substitution (either none or one of per-methylation, per-acetylation, per-

deuteromethylation and per-deuteroacetylation), the identities and quantities of ion adducts (H+, 

Na+, K+, Li+ are currently available) and the neutral exchanges. Modifications at the reducing-end 

(such as fluorescence labels) and single position substitutions (such as sulphates) are considered 

as constituents of the structure. A configuration file stores the value of masses and number of 

positions available to methyl and acetyl substituents for each possible structural constituent. The 

mass of the intact or fragment molecule is computed by traversing the structure, counting the 

mass of each component incremented by the possible per-substitutions and accounting for the 

mass loss given by the formation of glycosidic bonds. The mass to charge ratio is finally 

computed from the mass value by taking into account ion adducts and neutral exchanges. 

2.3. Specification of a peak-list 

The “PeakList” panel (Figure 2) allows the user to visualize and modify the list of labeled peaks 

(simply referred to as peak-list in the text and the software) that will be used during annotation. 

The peak-list can be loaded from a tab-separated text file, thus allowing for import from external 

applications such as peak-picking software, or can be created by typing mass and intensity values 

directly in the spreadsheet-like view. Alternatively, the raw spectrum can be loaded from file, 
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using several standard XML or vendor specific data formats (supported through the use of the 

ProteomeCommons IO library31). The data is displayed in the “Spectra” panel (Figure 2) and can 

be panned or zoomed to highlight specific regions. The user can then select the mass-to-charge 

values directly from the spectrum and add them to the peak-list. In GlycoWorkbench there are no 

functions for processing the spectra, like de-convolution or centroid discovery, since these 

features are already found in the software provided with the MS instrumentation from which the 

peak-list can be exported. 

2.4. In-silico Fragmentation 

The computation of fragments and their masses from the intact structure is a central step for the 

annotation of MSn spectra. The fragmentation of glycans is very specific to the experimental 

conditions which can be extremely varied. Therefore, the strategy implemented in 

GlycoWorkbench is to generate all topologically possible fragmentations of the precursor 

molecular ion, applying both multiple glycosidic cleavages and cross-ring fragmentations, in 

order to cover the broadest possible range of conditions. The type and number of cleavages that 

are generated can be specified by the user. The list of cross-ring fragments is derived from a 

configuration file listing all possible cross-ring cleavages for each available monosaccharide 

type. For each entry in the file, the mass and the hydroxyl positions inherited from the intact 

monosaccharide ring are specified.  

Fragments are computed by traversing the tree structure of the glycan and applying all the 

applicable cleavages at each single node. A fragment is allowed only if it contains at least an 

intact monosaccharide residue. In case of glycosidic cleavages two different sub-trees are created 

from the original structure: one corresponding to the sub-tree rooted at the current node (B or C 

cleavages) and the other being its complementary set of nodes (for Y and Z). In case of cross-ring 
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cleavages, the current node is first substituted with the corresponding cleaved ring. The algorithm 

then checks which hydroxyl positions of the monosaccharide ring are conserved by the cleavage, 

and leaves all the corresponding linkages intact while removing the other residues. Internal cross-

ring fragments are not allowed (having both the reducing and non-reducing end sides) since they 

are rarely observed in practice. The fragmentation algorithm is recursively applied to fragmented 

structures in order to produce multiple cleavages.  

The set of all generated fragments can be displayed in the “Fragments/List” panel by a tabular 

form that contains in each row: the fragment structure represented in the current symbolic 

notation, the type of fragment specified as a the list of cleavage types in the Domon and Costello 

notation, the mass to charge ratio given the ion adducts (inherited from the parent structure), the 

identities and quantities of ion adducts, the neutral exchanges (if any), and the mass of the 

fragment without adducts.  

A visual editor of glycan fragments is also available (Figure 3a), where the user can specify in 

which positions the cleavages are occurring on the displayed structure in order to reproduce an 

already known fragment molecule. A single click on a glycosidic bond of a structure model 

generates the two resulting fragments. Similarly, the cross-ring fragments are generated by 

clicking on a monosaccharide residue. Multiple cleavages are produced by selecting the cleavage 

position on the already fragmented molecule. All the fragments are displayed with their mass and 

mass to charge value and can be copied to the structure editor for exporting to other software 

tools. 

2.5. Automatic Annotation 

The list of fragments generated by in-silico fragmentation of each candidate structure is finally 

tested for matches against the list of labeled peaks. Each fragment is tested against each peak to 
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check if the computed m/z value matches the experimentally derived one given the desired 

accuracy. For each fragment all possible combinations of ions adduct are generated. This feature 

allows the annotation of mass spectra derived from all sort of instrumentation by generating 

singly or multiply charged ions. The user can specify the maximum number and types of ions that 

can be associated with the glycan together with the possible number of neutral exchanges of 

charges (same choices available for the computation of masses). The maximum number of 

exchanges is determined by counting the charges available on the structure (given by the 

carboxylic, phosphate and sulphate groups) and can be further limited by specifying which ions 

are exchanged with protons.  

The resulting annotated peak-list can be viewed using various panels that show different types of 

information. Each panel is based around a spreadsheet-like tabular form, whose cell values can be 

sorted by each column, and can be copied into other spreadsheet software. The 

“Annotation/Details” view (see Figure 4a) shows a detailed list of fragment-peak matches for 

each candidate structure. For each entry in the list, the peak intensity and m/z value are displayed 

together with the associated fragment structure, its mass and m/z value, the type of cleavages, the 

annotation accuracy (as the difference between the m/z values), the number and types of ion 

adducts and neutral exchanges. In GlycoWorkbench the type of the cleavage does not specify the 

position of the cleaved bond(s) (as in the Domon and Costello notation), since fragments with 

identical chemical structures are shown only once but can arise from cleavages in different parts 

of the glycan. This view can be used to refine the assignments by removing the matches that are 

not satisfactory given the user knowledge of the fragmentation pathway. The 

“Annotation/Summary” view (Figure 5b) lets the user compare the annotations for the different 

structures back-to-back in the same table. The matching fragments from the different candidates 

are shown in adjacent columns, with each row corresponding to a single peak. In this way, signals 
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that could distinguish the correct annotation from the other hypothetical models can be easily 

identified. The “Annotation/Statistics” view (Figure 5a) lets the user perform a quantitative 

comparison between the annotations, by showing a few aggregated indicators of the quality of the 

annotations. The coverage of the annotation is computed as the sum of the intensity values of all 

matched peaks divided by the sum of the intensities of all peaks. The average deviation between 

the acquired and the calculated mass to charge values is displayed in absolute and in ppm scale. 

The number of annotated peaks is displayed at three different thresholds of the relative 

intensities: for all the peaks, for peaks with intensity greater than 10% that of the highest peak 

and greater than 5%. The latter values focus on the major peaks to verify if the main signals in 

the spectrum are explained. Finally, the “Annotation/Calibration” view shows a scatter plot 

where each annotation has X coordinate corresponding to the real m/z value and Y coordinate 

corresponding to the accuracy of the annotation. For each peak, the best annotation giving the 

lowest deviation from the measured m/z value is highlighted in red. This view allows the user to 

verify the correct calibration of the mass spectra by highlighting trends in the annotation 

accuracy. 

3. Results and Discussion 

The use of GlycoWorkbench can greatly simplify the routine work conducted during 

interpretation of mass spectrometric data. The efficacy of the features offered by the tool can be 

best demonstrated using examples of practical annotation of mass spectra. In the following 

paragraphs several common use cases are shown, which include: detection of ion pairs from 

single bond cleavages to enhance manual interpretation of a mass spectrum, semi-automatic 

annotation of an MS/MS spectrum, differentiation between various structure candidates, location 

of an undetermined fucose, and detection of cross-ring fragments from a permethylated glycan. 
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The first four examples use data collected from the glycan structures present in a sample of 

batroxobin toxin from the Bothrops moojeni venom32. The investigated MALDI spectra of the 

pyridylaminated (-PA) N-glycans were recorded on an Ultraflex I (Bruker Daltonik, Bremen DE) 

in positive ion LID mode33. The last example uses data collected from a sample of Lacto-N-

fucopentaose (Dextra, Reading UK). The glycan was permethylated using the procedure 

described by Dell34 and the spectrum was obtained with an MALDI-ToF/ToF 4800 (Applied 

Biosystem, Foster City CA) in positive ion reflectron mode.   

The figures showing annotated spectra have been produced by copying the fragments and 

structures drawn with GlycoWorkbench into a graphic editor. 

3.1. Using the fragment editor for manual annotation 

Manual interpretation of mass spectra of glycans is often a search for ion pairs which arise from 

the cleavage of single glycosidic bonds. The “Fragments Editor” uses the in-silico fragmentation 

tool to generate these fragments and allows a fast detection of such pairs from their m/z value. 

Figure 3A shows examples of such ion pairs generated from a bi-antennary N-glycan 

Hex3HexNAc6-PA. The ion pairs at m/z 204 and m/z 1598, m/z 407 and m/z 1395, m/z 569 and 

m/z 1233, describe the step by step degradation of one of the antennae of the N-glycan. Each pair 

has one peak representing a B-ion in the lower mass region and a corresponding peak 

representing a Y-ion in the higher mass region (Figure 3B). The “Fragments Editor” can also be 

useful to check the mass values of an already manually annotated spectrum. The completely 

assigned spectrum is given in the supplementary material (Figure S1). 

3.2. Complete annotation of a spectrum  

An almost complete annotation of the major peaks of a spectrum is necessary for the 

determination of a glycan structure by mass spectrometry. The automatic annotation tool from 
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GlycoWorkbench can be used to match the in silico-generated list of fragments of the given 

structure candidates with the list of peaks labeled in the spectrum. Figure 4A displays the 

automatic annotation of the peak list of the mass spectrum of a sodiated N-glycan 

Hex3HexNAc6Fuc1-PA sorted by intensity of the mass signals. Only the most significant matches 

are shown to increase the clarity of the figure. The “Annotation Details” panel gives a detailed 

overview of the annotated peak list and allows a review of the annotation results. All assigned 

fragments are represented in the spectrum in Figure 4B. The flexibility of GlycoWorkbench 

allows parallel annotation of fragments with different ion adducts, such as sodiated and 

protonated fragments. The completely assigned spectrum is given in the supplementary material 

(Figure S2). 

3.3. Discrimination between different structure candidates 

The third example demonstrates how GlycoWorkbench can be effectively used when comparing 

more than one structure candidate with the acquired spectrum. After a composition analysis of the 

precursor mass of a fragment spectrum and a composition search in databases (e. g. using the 

Glyco-Peakfinder webservice11) candidates with more than one structure can be possible. As 

described in the previous example, the matching of the peak-list with the in-silico generated 

fragments can be done as a parallel calculation for more than one structure candidate. Figure 5A 

displays the “Stats” view of the matching of three candidates with the spectrum of a protonated 

N-glycan Hex5HexNAc4Fuc1-PA.  

In our example, the structure candidates either carrying fucose at an antenna or being of the 

complex-type N-glycan have noticeably worse coverage than the hybrid-type structure model. 

However, the choice between the candidates can only be made by rigorously comparing the 

annotations for each peak. Figure 5B gives a more detailed view of the matches between in-silico 
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fragmentation of all candidates and the mass list using the “Summary” panel. The final structure 

determination from the mass spectrum (for complete assignment see supplementary material) is 

based on the annotation of two major peaks in the spectrum: the signal at m/z 446 (FucHexNAc-

PA) definitely shows a core fucosylation and the peak at m/z 407 (HexNAc2) clearly proves the 

existence of only one complex-type antenna, since the complete structure comprises only 4 

HexNAc in total. 

3.4. Automatic positioning of residues with unknown attachment sites 

The next example demonstrates a more advanced determination of structural details. Often the 

location of a fucose, as seen in the previous example, is one of the key questions for glyco-

biologists. GlycoWorkbench incorporates in the annotation tool a feature that allows the 

automatic comparison of structure candidates arising from the placement of uncertain antennae in 

all possible positions within the structure. Figure 6 displays the positioning of a fucose in the bi-

antennary N-glycan Hex3HexNAc6Fuc1-PA. The decision where to locate the fucose residue 

correctly could already be given by looking at the “Stats” view. The coverage of the given 

intensity of the structure model with the fucose at the inner GlcNAc of the core is significantly 

superior to all the other possibilities. The complete annotation is then confirming this choice.          

3.5. Annotation of spectra of persubstituted glycans showing evidence of  ring 

fragmentation 

In the previous examples all the structures were underivatized and only the fragments resulting 

from glycosidic bond cleavages were used to annotate the spectrum. In this further example the 

applicability of GlycoWorkbench to different types of experimental setups is demonstrated. 

Figure 7 shows the detailed annotation of a list of peaks selected from a spectrum of the 

permethylated oligosaccharide Lacto-N-fucopentaose. Cross-ring fragments can be extremely 
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useful in identifying the linkage positions of monosaccharides by MS without additional linkage 

analysis. The in-silico fragmentation tool is able to compute cross-ring fragments for all available 

monosaccharides and to use them for annotation of the mass spectrum as shown in the figure. 

4. Concluding remarks 

Determination of glycan structures from analysis of MS data is a major bottleneck in high-

throughput glycomics projects, and robust solutions to this problem are of critical importance. 

However, the current status of tools to analyze glycan MS data shows that completely automated 

interpretation of generic mass spectrometric data is still unfeasible. GlycoWorkbench is a semi-

automatic annotation tool developed by the EUROCarbDB initiative to assist the manual 

interpretation of MS data. GlycoWorkbench provides an integrated environment with an easy to 

use graphical interface that allows a sensible simplification of the determination of glycan 

sequences from mass spectrometric data. 

The visual editor of glycan structures based on GlycanBuilder22 enables a rapid assembly of 

structure models and their display in various symbolic notations. The annotation process allows 

the assignment of experimental peaks with a complete list of theoretical fragments by taking into 

account several types of experimental techniques. The annotation reports assist the determination 

of the correct structure by allowing the comparison of quality and coverage of the different 

assignments. The examples shown in section 3 demonstrate how the tool can provide a complete 

support to the routine interpretation of mass spectrometric data.  

The possibility of importing structure candidates into GlycoWorkbench using several sequence 

encoding formats allow the user to integrate the tool with existing structure databases and with 

composition analysis tools such as Glyco-Peakfinder11 to assist during the selection of potential 

candidates . Tight integration of the upcoming structure database from EUROCarbDB and of the 
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Glyco-Peakfinder tool into the GlycoWorkbench interface will enhance the tool with the 

capability of profiling glycan structures by mass value and will provide a complete workflow 

from raw data to completely annotated spectra. 

GlycoWorkbench has been developed to offer a complete set of features that cover a broad 

spectrum of experimental MS techniques. The tool has been publicly available23 from the very 

beginning as to fulfill the open access philosophy of EUROCarbDB. The sum of these factors has 

resulted in several laboratories already employing the GlycoWorkbench to assist their research. 

The experiences and feedback obtained from the users are of great importance for the constant 

development of the tool to further enhance its usability and flexibility. The tool is continuously 

updated and is designed to enable the addition of new features as pluggable components. 

GlycoWorkbench has been developed for EUROCarbDB and as part of this initiative its 

components are being used to develop this database. With the progression of the database 

development and the collection of valuable data into it, the GlycoWorkbench will be connected to 

a precious source of expert knowledge that will be used to increase the level of automation in the 

annotation process. Information such as experimentally derived structures and previously 

assigned spectra could be directly applied to the annotation of new data, while other information 

such as biosynthetic and fragmentation pathways could be extracted from the data and used to 

build more intelligent features into the tool. With the addition of new components and the 

continuous development the tool is undergoing, GlycoWorkbench is projected to become a 

complete platform for analysis of glycomic MS data. 
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6. Availability 

The software is freely available and can be downloaded from http://www.eurocarbdb.org/ms-

tools. The use of the tool requires the installation of Java 5.0. Further information is provided in 

the download page. 

7. Supporting information 

Supporting Information Available: This material is available free at http://pubs.acs.org. 

Figure S1: see Figure 3, fully assigned spectrum. For peaks with multiple possible assignments 

only one is displayed.  

Figure S2: see Figure 4, fully assigned spectrum. For peaks with multiple possible assignments 

only one is displayed.  
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Figure S3: see Figure 7, fully assigned spectrum, enlarged version. 
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8. Tables 

Table 1: List of available monosaccharides 

Type Symbol Description Symbol Description 

Deoxypentose dPen Deoxypentose dRib Deoxyribose 

Pentose Pen Pentose Ara Arabinose 

Rib Ribose Xyl Xylose 

Deoxyhexose dHex Deoxyhexose   

Rha Rhamnose Fuc Fucose 

dTal 6-Deoxytalose Qui Quivonose 

Hexose Hex Hexose MeH 3-Methyl-hexose 

Glc Glucose Gal Galactose 

Tal Talose Man Mannose 

Fru Fructose All Allose 

Hexosamine HexN Hexosamine GalN Galactosamine 

GlcN Glucosamine ManN Mannosamine 

Acidic sugar HexA Hexuronic Acid   

GlcA Glucuronic Acid GalA Galacturonic Acid 

ManA Mannuronic Acid IdoA Iduronic Acid 

Unsaturated 
acidic sugar 

4uHexA 4-unsaturated HexA   

4uGlcA 4-unsaturated GlcA 4uGalA 4-unsaturated GalA 

4uManA 4-unsaturated ManA 4uIdoA 4-unsaturated IdoA 

Deoxyheptose dHept Deoxyheptose dHept Deoxyheptose 

Heptose Hept Heptose Hept Heptose 

N-acetyl 
hexosamine 

HexNAc N-acetylhexosamine GalNAc N-acetylgalactosamine 

GlcNAc N-acetylglucosamine ManNAc N-acetylmannosamine 

Acidic sugar MurNAc Muramic acid Neu Neuraminic acid 

KDN KDN NeuAc N-Acetyl Neuraminic acid 

KDO KDO NeuGc N-glycolyl Neuraminic acid 
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Table 2: List of available reducing-end modifications 

Symbol Description 

freeEnd Free reducing end 

redEnd Reduced reducing end 

PA 2-Aminopyridine 

2AP 2-Aminopyridine 

2AB 2-Aminobenzamide 

AA Anthranilic Acid 

DAP 2,6-Diaminopyridine 

4AB 4-Aminobenzamidine 

DAPMAB 4-(N-[2,4-Diamino-6-pteridinylmethyl]amino)benzoic acid 

AMC 7-Amino-4-methylcoumarin 

6AQ 6-Aminoquinoline 

2AAc 2-Aminoacridone 

FMC 9-Fluorenylmethyl carbazate 

DH Dansylhydrazine 

 

Table 3: List of available substituents 

Symbol Description 

Me Methyl 

Ac Acetate 

NAc N-Acetate 

Pv Pyruvate 

P Phosphate 

S Sulphate 
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10. Figures 

 

Figure 1: Nomenclature of fragments of carbohydrates as defined by Domon and Costello5. 
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Figure 2: Graphical interface of the GlycoWorkbench tool. In this figure the main drawing 

canvas, the spectra panel and the peaklist panel are shown. 
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Figure 3: Example of manual interpretation of mass spectra. The fragment editor is used to find 

ion pairs resulting from single glycosidic bond cleavages (A). The ion pairs at m/z 204 and m/z 

1598, m/z 407 and m/z 1395, m/z 569 and m/z 1233, describe the step by step degradation of one 

of the antennae of the N-glycan. Each pair has one peak representing a B-ion in the lower mass 

region and a corresponding peak representing a Y-ion in the higher mass region (B).  
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Figure 4: Automatic annotation of the peak list of a LID spectrum of a sodiated N-glycan 

Hex3HexNAc6Fuc1-PA sorted by intensity of the mass signals. Only the most significant matches 

are shown to increase the clarity of the figure. The “Annotation Details” panel (A) gives a 

detailed overview of the annotated peaklist and allows a review of the annotation results. All 

assigned fragments are represented on the spectra (B). 
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Figure 5: Parallel annotation of the same peaklist with multiple structure candidates. A) “Stats” 

view of the matching of three candidates with the spectrum of a protonated N-glycan 

Hex5HexNAc4Fuc1-PA. The structure candidates with the fucose at the antennae and the complex 

N-glycan have noticeable worse coverage than the hybrid structure model; B) more detailed view 

of the matches between in-silico fragmentation of all candidates and the mass list using the 

“Summary” panel. The signal at m/z 446 (FucHexNAc-PA) definitely shows a core fucosylation 

and the peak at m/z 407 (HexNAc2) clearly proves the existence of only one complex antenna, 

since the complete structure comprises only 4 HexNAc in total. 
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Figure 6: Automatic positioning of a fucose in the biantennary N-glycan Hex3HexNAc6Fuc1-PA. 

The decision where to locate the fucose residue correctly can be again directly judged from the 

“Stats” view. The coverage of the given intensity of the structure model with the fucose at the 

reducing end GlcNAc of the core is significantly superior to all the other possibilities. 
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Figure 7: Detailed annotation of a list of peaks selected from a spectrum of permethylated Lacto-

N-fucopentaose. Cross-ring fragments can be extremely useful in identifying the linkage 

positions of monosaccharides by MS without additional linkage analysis. The in-silico 

fragmentation tool is able to compute cross-ring fragments for all available monosaccharides and 

use them to annotate the mass spectrum as shown here. 
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11. Table of contents 

 

 

GlycoWorkbench is a software tool developed to assist the interpretation of MS data of glycans. 

The main task of GlycoWorkbench is to evaluate a set of structures proposed by the user by 

matching the corresponding list of fragment masses against the list of peaks derived from the 

spectrum. The tool provides an easy to use graphical interface and a broad set of features. The 

software can be downloaded from http://www.eurocarbdb.org/applications/ms-tools.  


