3,420 research outputs found

    Universality in three-dimensional Ising spin glasses: Nonequilibrium dynamics from Monte Carlo simulations

    Full text link
    The non-equilibrium dynamics of the three-dimensional Edwards-Anderson spin-glass model with different bond distributions is investigated by means of Monte Carlo simulation. A numerical method is used to determine the critical temperature and the scaling exponents of the correlation and the integrated response functions. The results obtained agree with those calculated in equilibrium simulations and suggest that the universality class does not depend on the exact form of the bond distribution.Comment: 4 pages, 5 figure

    On Pseudo-Hermitian Hamiltonians and Their Hermitian Counterparts

    Full text link
    In the context of two particularly interesting non-Hermitian models in quantum mechanics we explore the relationship between the original Hamiltonian H and its Hermitian counterpart h, obtained from H by a similarity transformation, as pointed out by Mostafazadeh. In the first model, due to Swanson, h turns out to be just a scaled harmonic oscillator, which explains the form of its spectrum. However, the transformation is not unique, which also means that the observables of the original theory are not uniquely determined by H alone. The second model we consider is the original PT-invariant Hamiltonian, with potential V=igx^3. In this case the corresponding h, which we are only able to construct in perturbation theory, corresponds to a complicated velocity-dependent potential. We again explore the relationship between the canonical variables x and p and the observables X and P.Comment: 9 pages, no figure

    Superspace formulation of general massive gauge theories and geometric interpretation of mass-dependent BRST symmetries

    Get PDF
    A superspace formulation is proposed for the osp(1,2)-covariant Lagrangian quantization of general massive gauge theories. The superalgebra os0(1,2) is considered as subalgebra of sl(1,2); the latter may be considered as the algebra of generators of the conformal group in a superspace with two anticommuting coordinates. The mass-dependent (anti)BRST symmetries of proper solutions of the quantum master equations in the osp(1,2)-covariant formalism are realized in that superspace as invariance under translations combined with mass-dependent special conformal transformations. The Sp(2) symmetry - in particular the ghost number conservation - and the "new ghost number" conservation are realized as invariance under symplectic rotations and dilatations, respectively. The transformations of the gauge fields - and of the full set of necessarily required (anti)ghost and auxiliary fields - under the superalgebra sl(1,2) are determined both for irreducible and first-stage reducible theories with closed gauge algebra.Comment: 35 pages, AMSTEX, precision of reference

    Non-Hermitian oscillator Hamiltonian and su(1,1): a way towards generalizations

    Full text link
    The family of metric operators, constructed by Musumbu {\sl et al} (2007 {\sl J. Phys. A: Math. Theor.} {\bf 40} F75), for a harmonic oscillator Hamiltonian augmented by a non-Hermitian PT\cal PT-symmetric part, is re-examined in the light of an su(1,1) approach. An alternative derivation, only relying on properties of su(1,1) generators, is proposed. Being independent of the realization considered for the latter, it opens the way towards the construction of generalized non-Hermitian (not necessarily PT\cal PT-symmetric) oscillator Hamiltonians related by similarity to Hermitian ones. Some examples of them are reviewed.Comment: 11 pages, no figure; changes in title and in paragraphs 3 and 5; final published versio

    Moyal products -- a new perspective on quasi-hermitian quantum mechanics

    Full text link
    The rationale for introducing non-hermitian Hamiltonians and other observables is reviewed and open issues identified. We present a new approach based on Moyal products to compute the metric for quasi-hermitian systems. This approach is not only an efficient method of computation, but also suggests a new perspective on quasi-hermitian quantum mechanics which invites further exploration. In particular, we present some first results which link the Berry connection and curvature to non-perturbative properties and the metric.Comment: 14 pages. Submitted to J Phys A special issue on The Physics of Non-Hermitian Operator

    On the Learnability of Software Router Performance via CPU Measurements

    Get PDF
    In the last decade the ICT community observed a growing popularity of software networking paradigms. This trend consists in moving network applications from static, expensive, hardware equipment (e.g. router, switches, firewalls) towards flexible, cheap pieces of software that are executed on a commodity server. In this context, a server owner may provide the server resources (CPUs, NICs, RAM) for customers, following a Service-Level Agreement (SLA) about clients' requirements. The problem of resource allocation is typically solved by overprovisioning, as the clients' application is opaque to the server owner, and the resource required by clients' applications are often unclear or very difficult to quantify. This paper shows a novel approach that exploits machine learning techniques in order to infer the input traffic load (i.e., the expected network traffic condition) by solely looking at the runtime CPU footprint

    Simultaneous Embeddings with Few Bends and Crossings

    Full text link
    A simultaneous embedding with fixed edges (SEFE) of two planar graphs RR and BB is a pair of plane drawings of RR and BB that coincide when restricted to the common vertices and edges of RR and BB. We show that whenever RR and BB admit a SEFE, they also admit a SEFE in which every edge is a polygonal curve with few bends and every pair of edges has few crossings. Specifically: (1) if RR and BB are trees then one bend per edge and four crossings per edge pair suffice (and one bend per edge is sometimes necessary), (2) if RR is a planar graph and BB is a tree then six bends per edge and eight crossings per edge pair suffice, and (3) if RR and BB are planar graphs then six bends per edge and sixteen crossings per edge pair suffice. Our results improve on a paper by Grilli et al. (GD'14), which proves that nine bends per edge suffice, and on a paper by Chan et al. (GD'14), which proves that twenty-four crossings per edge pair suffice.Comment: Full version of the paper "Simultaneous Embeddings with Few Bends and Crossings" accepted at GD '1
    • 

    corecore