3,510 research outputs found

    On Pseudo-Hermitian Hamiltonians and Their Hermitian Counterparts

    Full text link
    In the context of two particularly interesting non-Hermitian models in quantum mechanics we explore the relationship between the original Hamiltonian H and its Hermitian counterpart h, obtained from H by a similarity transformation, as pointed out by Mostafazadeh. In the first model, due to Swanson, h turns out to be just a scaled harmonic oscillator, which explains the form of its spectrum. However, the transformation is not unique, which also means that the observables of the original theory are not uniquely determined by H alone. The second model we consider is the original PT-invariant Hamiltonian, with potential V=igx^3. In this case the corresponding h, which we are only able to construct in perturbation theory, corresponds to a complicated velocity-dependent potential. We again explore the relationship between the canonical variables x and p and the observables X and P.Comment: 9 pages, no figure

    Dynamical stabilization of classical multi electron targets against autoionization

    Get PDF
    We demonstrate that a recently published quasiclassical M\oller type approach [Geyer and Rost 2002, J. Phys. B 35 1479] can be used to overcome the problem of autoionization, which arises in classical trajectory calculations for many electron targets. In this method the target is stabilized dynamically by a backward--forward propagation scheme. We illustrate this refocusing and present total cross sections for single and double ionization of helium by electron impact.Comment: LaTeX, 6 pages, 2 figures; submitted to J. Phys.

    Superspace formulation of general massive gauge theories and geometric interpretation of mass-dependent BRST symmetries

    Get PDF
    A superspace formulation is proposed for the osp(1,2)-covariant Lagrangian quantization of general massive gauge theories. The superalgebra os0(1,2) is considered as subalgebra of sl(1,2); the latter may be considered as the algebra of generators of the conformal group in a superspace with two anticommuting coordinates. The mass-dependent (anti)BRST symmetries of proper solutions of the quantum master equations in the osp(1,2)-covariant formalism are realized in that superspace as invariance under translations combined with mass-dependent special conformal transformations. The Sp(2) symmetry - in particular the ghost number conservation - and the "new ghost number" conservation are realized as invariance under symplectic rotations and dilatations, respectively. The transformations of the gauge fields - and of the full set of necessarily required (anti)ghost and auxiliary fields - under the superalgebra sl(1,2) are determined both for irreducible and first-stage reducible theories with closed gauge algebra.Comment: 35 pages, AMSTEX, precision of reference

    Non-Hermitian oscillator Hamiltonian and su(1,1): a way towards generalizations

    Full text link
    The family of metric operators, constructed by Musumbu {\sl et al} (2007 {\sl J. Phys. A: Math. Theor.} {\bf 40} F75), for a harmonic oscillator Hamiltonian augmented by a non-Hermitian PT\cal PT-symmetric part, is re-examined in the light of an su(1,1) approach. An alternative derivation, only relying on properties of su(1,1) generators, is proposed. Being independent of the realization considered for the latter, it opens the way towards the construction of generalized non-Hermitian (not necessarily PT\cal PT-symmetric) oscillator Hamiltonians related by similarity to Hermitian ones. Some examples of them are reviewed.Comment: 11 pages, no figure; changes in title and in paragraphs 3 and 5; final published versio

    Effects of phase transitions in devices actuated by the electromagnetic vacuum force

    Full text link
    We study the influence of the electromagnetic vacuum force on the behaviour of a model device based on materials, like germanium tellurides, that undergo fast and reversible metal-insulator transitions on passing from the crystalline to the amorphous phase. The calculations are performed at finite temperature and fully accounting for the behaviour of the material dielectric functions. The results show that the transition can be exploited to extend the distance and energy ranges under which the device can be operated without undergoing stiction phenomena. We discuss the approximation involved in adopting the Casimir expression in simulating nano- and micro- devices at finite temperature

    Moyal products -- a new perspective on quasi-hermitian quantum mechanics

    Full text link
    The rationale for introducing non-hermitian Hamiltonians and other observables is reviewed and open issues identified. We present a new approach based on Moyal products to compute the metric for quasi-hermitian systems. This approach is not only an efficient method of computation, but also suggests a new perspective on quasi-hermitian quantum mechanics which invites further exploration. In particular, we present some first results which link the Berry connection and curvature to non-perturbative properties and the metric.Comment: 14 pages. Submitted to J Phys A special issue on The Physics of Non-Hermitian Operator

    Reconstruction of thermally-symmetrized quantum autocorrelation functions from imaginary-time data

    Full text link
    In this paper, I propose a technique for recovering quantum dynamical information from imaginary-time data via the resolution of a one-dimensional Hamburger moment problem. It is shown that the quantum autocorrelation functions are uniquely determined by and can be reconstructed from their sequence of derivatives at origin. A general class of reconstruction algorithms is then identified, according to Theorem 3. The technique is advocated as especially effective for a certain class of quantum problems in continuum space, for which only a few moments are necessary. For such problems, it is argued that the derivatives at origin can be evaluated by Monte Carlo simulations via estimators of finite variances in the limit of an infinite number of path variables. Finally, a maximum entropy inversion algorithm for the Hamburger moment problem is utilized to compute the quantum rate of reaction for a one-dimensional symmetric Eckart barrier.Comment: 15 pages, no figures, to appear in Phys. Rev.

    Coordinate Singularities in Harmonically-sliced Cosmologies

    Get PDF
    Harmonic slicing has in recent years become a standard way of prescribing the lapse function in numerical simulations of general relativity. However, as was first noticed by Alcubierre (1997), numerical solutions generated using this slicing condition can show pathological behaviour. In this paper, analytic and numerical methods are used to examine harmonic slicings of Kasner and Gowdy cosmological spacetimes. It is shown that in general the slicings are prevented from covering the whole of the spacetimes by the appearance of coordinate singularities. As well as limiting the maximum running times of numerical simulations, the coordinate singularities can lead to features being produced in numerically evolved solutions which must be distinguished from genuine physical effects.Comment: 21 pages, REVTeX, 5 figure

    On the efficient Monte Carlo implementation of path integrals

    Full text link
    We demonstrate that the Levy-Ciesielski implementation of Lie-Trotter products enjoys several properties that make it extremely suitable for path-integral Monte Carlo simulations: fast computation of paths, fast Monte Carlo sampling, and the ability to use different numbers of time slices for the different degrees of freedom, commensurate with the quantum effects. It is demonstrated that a Monte Carlo simulation for which particles or small groups of variables are updated in a sequential fashion has a statistical efficiency that is always comparable to or better than that of an all-particle or all-variable update sampler. The sequential sampler results in significant computational savings if updating a variable costs only a fraction of the cost for updating all variables simultaneously or if the variables are independent. In the Levy-Ciesielski representation, the path variables are grouped in a small number of layers, with the variables from the same layer being statistically independent. The superior performance of the fast sampling algorithm is shown to be a consequence of these observations. Both mathematical arguments and numerical simulations are employed in order to quantify the computational advantages of the sequential sampler, the Levy-Ciesielski implementation of path integrals, and the fast sampling algorithm.Comment: 14 pages, 3 figures; submitted to Phys. Rev.

    Exact Foldy-Wouthuysen transformation for gravitational waves and magnetic field background

    Full text link
    We consider an exact Foldy-Wouthuysen transformation for the Dirac spinor field on the combined background of a gravitational wave and constant uniform magnetic field. By taking the classical limit of the spinor field Hamiltonian we arrive at the equations of motion for the non-relativistic spinning particle. Two different kinds of the gravitational fields are considered and in both cases the effect of the gravitational wave on the spinor field and on the corresponding spinning particle may be enforced by the sufficiently strong magnetic field. This result can be relevant for the astrophysical applications and, in principle, useful for creating the gravitational wave detectors based on atomic physics and precise interferometry
    • …
    corecore