15 research outputs found

    Thyroidal and Extrathyroidal Requirements for Iodine and Selenium:A Combined Evolutionary and (Patho)Physiological Approach

    Get PDF
    Iodide is an antioxidant, oxidant and thyroid hormone constituent. Selenoproteins are needed for triiodothyronine synthesis, its deactivation and iodine release. They also protect thyroidal and extrathyroidal tissues from hydrogen peroxide used in the ‘peroxidase partner system’. This system produces thyroid hormone and reactive iodine in exocrine glands to kill microbes. Exocrine glands recycle iodine and with high urinary clearance require constant dietary supply, unlike the thyroid. Disbalanced iodine-selenium explains relations between thyroid autoimmune disease (TAD) and cancer of thyroid and exocrine organs, notably stomach, breast, and prostate. Seafood is iodine unconstrained, but selenium constrained. Terrestrial food contains little iodine while selenium ranges from highly deficient to highly toxic. Iodine vs. TAD is U-shaped, but only low selenium relates to TAD. Oxidative stress from low selenium, and infection from disbalanced iodine-selenium, may generate cancer of thyroid and exocrine glands. Traditional Japanese diet resembles our ancient seashore-based diet and relates to aforementioned diseases. Adequate iodine might be in the milligram range but is toxic at low selenium. Optimal selenoprotein-P at 105 µg selenium/day agrees with Japanese intakes. Selenium upper limit may remain at 300–400 µg/day. Seafood combines iodine, selenium and other critical nutrients. It brings us back to the seashore diet that made us what we currently still are

    Trastuzumab plus pertuzumab for HER2-amplified advanced colorectal cancer:Results from the drug rediscovery protocol (DRUP)

    Get PDF
    Background: In 2–5% of patients with colorectal cancer (CRC), human epidermal growth factor 2 (HER2) is amplified or overexpressed. Despite prior evidence that anti-HER2 therapy confers clinical benefit (CB) in one-third of these patients, it is not approved for this indication in Europe. In the Drug Rediscovery Protocol (DRUP), patients are treated with off-label drugs based on their molecular profile. Here, we present the results of the cohort ‘trastuzumab/pertuzumab for treatment-refractory patients with RAS/BRAF-wild-type HER2amplified metastatic CRC (HER2+mCRC)’. Methods: Patients with progressive treatment-refractory RAS/BRAF-wild-type HER2+mCRC with measurable disease were included for trastuzumab plus pertuzumab treatment. Primary endpoints of DRUP are CB (defined as confirmed objective response (OR) or stable disease (SD) ≥ 16 weeks) and safety. Patients were enrolled using a Simon-like 2-stage model, with 8 patients in stage 1 and 24 patients in stage 2 if at least 1/8 patients had CB. To identify biomarkers for response, whole genome sequencing (WGS) was performed on pre-treatment biopsies. Results: CB was observed in 11/24 evaluable patients (46%) with HER2+mCRC, seven patients achieved an OR (29%). Median duration of response was 8.4 months. Patients had undergone a median of 3 prior treatment lines. Median progression-free survival and overall survival were 4.3 months (95% CI 1.9–10.3) and 8.2 months (95% CI 7.2–14.7), respectively. No unexpected toxicities were observed. WGS provided potential explanations for resistance in 3/10 patients without CB, for whom WGS was available. Conclusions: The results of this study confirm a clinically significant benefit of trastuzumab plus pertuzumab treatment in patients with HER2+mCRC.</p

    2′-Fucosyllactose helps butyrate producers outgrow competitors in infant gut microbiota simulations

    No full text
    Summary: A reduced capacity for butyrate production by the early infant gut microbiota is associated with negative health effects, such as inflammation and the development of allergies. Here, we develop new hypotheses on the effect of the prebiotic galacto-oligosaccharides (GOS) or 2′-fucosyllactose (2′-FL) on butyrate production by the infant gut microbiota using a multiscale, spatiotemporal mathematical model of the infant gut. The model simulates a community of cross-feeding gut bacteria in metabolic detail. It represents the community as a grid of bacterial populations that exchange metabolites, using 20 different subspecies-specific metabolic networks taken from the AGORA database. The simulations predict that both GOS and 2′-FL promote the growth of Bifidobacterium, whereas butyrate producing bacteria are only consistently abundant in the presence of propane-1,2-diol, a product of 2′-FL metabolism. In absence of prebiotics or in presence of only GOS, however, Bacteroides vulgatus and Cutibacterium acnes outcompete butyrate producers by consuming intermediate metabolites

    The Lactococcus lactis CodY Regulon. Identification of a Conserved cis-Regulatory Element

    Get PDF
    CodY of Lactococcus lactis MG1363 is a transcriptional regulator that represses the expression of several genes encoding proteins of the proteolytic system. DNA microarray analysis, comparing the expression profiles of L. lactis MG1363 and an isogenic strain in which codY was mutated, was used to determine the CodY regulon. In peptide-rich medium and exponentially growing cells, where CodY exerts strong repressing activity, the expression of over 30 genes was significantly increased upon removal of codY. The differentially expressed genes included those predominantly involved in amino acid transport and metabolism. In addition, several genes belonging to other functional categories were derepressed, stressing the pleiotropic role of CodY. Scrutinizing the transcriptome data with bioinformatics tools revealed the presence of a novel overrepresented motif in the upstream regions of several of the genes derepressed in L. lactis MG1363ΔcodY. Evidence is presented that this 15-bp cis-sequence, AATTTTCWGAAAATT, serves as a high affinity binding site for CodY, as shown by electrophoretic mobility shift assays and DNase I footprinting analyses. The presence of this CodY-box is sufficient to evoke CodY-mediated regulation in vivo. A copy of this motif is also present in the upstream region of codY itself. It is shown that CodY regulates its own synthesis and requires the CodY-box and branched-chain amino acids to interact with its promoter.

    E-DES-PROT: A novel computational model to describe the effects of amino acids and protein on postprandial glucose and insulin dynamics in humans

    Get PDF
    Current computational models of whole-body glucose homeostasis describe physiological processes by which insulin regulates circulating glucose concentrations. While these models perform well in response to oral glucose challenges, interaction with other nutrients that impact postprandial glucose metabolism, such as amino acids (AAs), is not considered. Here, we developed a computational model of the human glucose-insulin system, which incorporates the effects of AAs on insulin secretion and hepatic glucose production. This model was applied to postprandial glucose and insulin time-series data following different AA challenges (with and without co-ingestion of glucose), dried milk protein ingredients, and dairy products. Our findings demonstrate that this model allows accurate description of postprandial glucose and insulin dynamics and provides insight into the physiological processes underlying meal responses. This model may facilitate the development of computational models that describe glucose homeostasis following the intake of multiple macronutrients, while capturing relevant features of an individual's metabolic health

    Trastuzumab plus pertuzumab for HER2-amplified advanced colorectal cancer:Results from the drug rediscovery protocol (DRUP)

    Get PDF
    Background: In 2–5% of patients with colorectal cancer (CRC), human epidermal growth factor 2 (HER2) is amplified or overexpressed. Despite prior evidence that anti-HER2 therapy confers clinical benefit (CB) in one-third of these patients, it is not approved for this indication in Europe. In the Drug Rediscovery Protocol (DRUP), patients are treated with off-label drugs based on their molecular profile. Here, we present the results of the cohort ‘trastuzumab/pertuzumab for treatment-refractory patients with RAS/BRAF-wild-type HER2amplified metastatic CRC (HER2+mCRC)’. Methods: Patients with progressive treatment-refractory RAS/BRAF-wild-type HER2+mCRC with measurable disease were included for trastuzumab plus pertuzumab treatment. Primary endpoints of DRUP are CB (defined as confirmed objective response (OR) or stable disease (SD) ≥ 16 weeks) and safety. Patients were enrolled using a Simon-like 2-stage model, with 8 patients in stage 1 and 24 patients in stage 2 if at least 1/8 patients had CB. To identify biomarkers for response, whole genome sequencing (WGS) was performed on pre-treatment biopsies. Results: CB was observed in 11/24 evaluable patients (46%) with HER2+mCRC, seven patients achieved an OR (29%). Median duration of response was 8.4 months. Patients had undergone a median of 3 prior treatment lines. Median progression-free survival and overall survival were 4.3 months (95% CI 1.9–10.3) and 8.2 months (95% CI 7.2–14.7), respectively. No unexpected toxicities were observed. WGS provided potential explanations for resistance in 3/10 patients without CB, for whom WGS was available. Conclusions: The results of this study confirm a clinically significant benefit of trastuzumab plus pertuzumab treatment in patients with HER2+mCRC.</p

    Efficacy, safety and biomarker analysis of durvalumab in patients with mismatch-repair deficient or microsatellite instability-high solid tumours

    No full text
    Background: In this study we aimed to evaluate the efficacy and safety of the PD-L1 inhibitor durvalumab across various mismatch repair deficient (dMMR) or microsatellite instability-high (MSI-H) tumours in the Drug Rediscovery Protocol (DRUP). This is a clinical study in which patients are treated with drugs outside their labeled indication, based on their tumour molecular profile. Patients and methods: Patients with dMMR/MSI-H solid tumours who had exhausted all standard of care options were eligible. Patients were treated with durvalumab. The primary endpoints were clinical benefit ((CB): objective response (OR) or stable disease ≥16 weeks) and safety. Patients were enrolled using a Simon like 2-stage model, with 8 patients in stage 1, up to 24 patients in stage 2 if at least 1/8 patients had CB in stage 1. At baseline, fresh frozen biopsies were obtained for biomarker analyses. Results: Twenty-six patients with 10 different cancer types were included. Two patients (2/26, 8%) were considered as non-evaluable for the primary endpoint. CB was observed in 13 patients (13/26, 50%) with an OR in 7 patients (7/26, 27%). The remaining 11 patients (11/26, 42%) had progressive disease. Median progression-free survival and median overall survival were 5 months (95% CI, 2-not reached) and 14 months (95% CI, 5-not reached), respectively. No unexpected toxicity was observed. We found a significantly higher structural variant (SV) burden in patients without CB. Additionally, we observed a significant enrichment of JAK1 frameshift mutations and a significantly lower IFN-γ expression in patients without CB. Conclusion: Durvalumab was generally well-tolerated and provided durable responses in pre-treated patients with dMMR/MSI-H solid tumours. High SV burden, JAK1 frameshift mutations and low IFN-γ expression were associated with a lack of CB; this provides a rationale for larger studies to validate these findings. Trial registration: Clinical trial registration: NCT02925234. First registration date: 05/10/2016

    Nutrigenomics:the impact of biomics technology on nutrition research

    No full text
    The interaction between the human body and nutrition is an extremely complex process involving multi-organ physiology with molecular mechanisms on all levels of regulation (genes, gene expression, proteins, metabolites). Only with the recent technology push have nutritional scientists been able to address this complexity. Both the challenges and promises that are offered by the merge of 'biomics' technologies and mechanistic nutrition research are huge, but will eventually evolve in a new nutrition research concept: nutritional systems biology. This review describes the principles and technologies involved in this merge. Using nutrition research examples, including gene expression modulation by carbohydrates and fatty acids, this review discusses applications as well as limitations of genomics, transcriptomics, proteomics, metabolomics, and systems biology. Furthermore, reference is made to gene polymorphisms that underlie individual differences in nutrient utilization, resulting in, e.g., different susceptibility to develop obesity
    corecore