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SUMMARY

Current computational models of whole-body glucose homeostasis describe
physiological processes by which insulin regulates circulating glucose concentra-
tions. While these models perform well in response to oral glucose challenges,
interaction with other nutrients that impact postprandial glucose metabolism,
such as amino acids (AAs), is not considered. Here, we developed a computational
model of the human glucose-insulin system,which incorporates the effects of AAs
on insulin secretion and hepatic glucose production. This model was applied to
postprandial glucose and insulin time-series data following different AA chal-
lenges (with and without co-ingestion of glucose), dried milk protein ingredients,
and dairy products. Our findings demonstrate that this model allows accurate
description of postprandial glucose and insulin dynamics and provides insight
into the physiological processes underlyingmeal responses. This model may facil-
itate the development of computational models that describe glucose homeosta-
sis following the intake of multiple macronutrients, while capturing relevant
features of an individual’s metabolic health.

INTRODUCTION

Glucose homeostasis is primarily regulated by the hormones insulin and glucagon, which act in antago-

nistic fashion to maintain circulating glucose concentrations within a healthy range.1,2 When glucose con-

centrations are elevated (i.e. following meal intake), pancreatic b-cells secrete insulin to suppress hepatic

glucose output and promote glucose uptake in peripheral organs, predominantly in the skeletal muscle.3 In

contrast, when glucose concentrations drop (i.e. during fasting or physical exercise), pancreatic a-cells

secrete glucagon to stimulate glycogen breakdown and gluconeogenesis (formation of glucose from

non-carbohydrate precursors), allowing glucose release from the liver into the circulation, thereby prevent-

ing hypoglycemia.4 As such, glucagon and insulin exert opposing actions on glucose metabolism and are

part of a tightly regulated feedback system to maintain glucose homeostasis.

Computational models of whole-body glucose homeostasis describe and incorporate the current mecha-

nistic understanding of insulin-mediated regulation of circulating glucose concentrations.5–7 These pro-

cesses are represented by model parameters, which can be estimated from postprandial time-series

data without requiring direct invasive measurements. One of the earliest computational glucose models,

the Bergman minimal model,5 was able to determine insulin sensitivity (i.e. the capability of insulin to

suppress hepatic glucose output and increase glucose disposal in insulin-sensitive tissues) and glucose

effectiveness (i.e. the ability of glucose to enhance its own disposal at basal insulin levels) in response to

an intravenous glucose tolerance test. The Bergman minimal model formed the basis of the Food and

Drug Administration–approved glucose-insulin model by Dalla Man and colleagues,6,8 which is used for

in silico simulation and testing of insulin pump systems. The Dalla Man model has been parameterized

using triple tracer glucose data to allow quantification of glucose fluxes between tissues.

The Eindhoven-Diabetes Education Simulator (E-DES), a multi-compartmental ordinary differential equa-

tion model, has been used to describe glucose dynamics following a glucose challenge in healthy individ-

uals as well as patients with type 1 and type 2 diabetes.7,9,10 We have previously individualized the E-DES

model to allow accurate description of individual postprandial responses compared to population-based
iScience 26, 106218, March 17, 2023 ª 2023 The Authors.
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Figure 1. Simulated postprandial responses in the literature study following ingestion of amino acids

The model parameters pertaining to amino acids (AAs, k11–k13) were estimated, whereas the other parameters were kept to their original population value.

The tAA input is shown in black (data and polynomial interpolation). The simulated glucose and insulin concentrations are shown in red and blue,

respectively. The measured concentrations, obtained from van Sloun et al.,13 are shown as black asterisk with corresponding standard errors of the means.
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models, demonstrating it is capable of providing mechanistic insight into glucose homeostasis of individ-

uals.11 While the E-DES model performs very well in response to an oral glucose challenge, modeling the

response to more complex meals is still challenging because these contain fat and protein, which also in-

fluence glucose homeostasis.

Dietary protein consists of amino acids (AAs) which are used for synthesis of body protein and of nitrogen-

containing compounds, such as creatine, peptide hormones, and several neurotransmitters.12 AAs have

been shown to influence glucose metabolism by inducing insulin secretion to facilitate AA uptake and

incorporation into protein in muscle tissue, and secreting glucagon to enhance hepatic AA uptake, produc-

tion of ketone bodies from AAs, and formation of glucose from AAs (i.e. gluconeogenesis).2,4 In a system-

atic review, we have recently summarized available studies describing postprandial glucose and insulin

responses to AAs.13

In the present study, we aimed to extend an existing computational model of the glucose-insulin regulatory

system to account for the postprandial effects of AAs. To parameterize themodel, we used time-series data

of postprandial AA, glucose and insulin concentrations following AA challenges (with and without glucose),

dried milk protein ingredients, and dairy products, derived both from a previously performed randomized,

single-blind crossover trial14 as well as data extracted from available literature.13 Here, we show that this

novel model, which we termed E-DES-PROT, accurately describes postprandial glucose and insulin dy-

namics, outperforms the original E-DES model, and allows insight into the physiological processes under-

lying meal responses.
RESULTS

Postprandial simulation of AA, glucose, and insulin dynamics following AA challenges and

intake of protein ingredients

We investigated whether our newly developed model was able to capture AA and protein challenges, esti-

mating only the model parameters accounting for AAs (k11-k13). The parameters pertaining to the original

E-DES model were kept to their healthy average population value and the measured plasma AA concen-

tration (pertaining to the challenge) was interpolated and provided to the model as an input.9

The simulated glucose and insulin responses, parameterized on the AA challenges (1 mmol/kg body

weight), are shown in Figure 1. The simulated glucose and insulin responses, parameterized on the milk

protein ingredients (i.e. WPC and MCI) containing 25 g of protein in a 700 mL solution, are shown in Fig-

ure 2. Here, the leftmost column pertains to the average population responses, whereas the other columns
2 iScience 26, 106218, March 17, 2023
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show selected individual responses highlighting striking model behavior. The complete overview of all the

individual glucose and insulin responses is shown in Data S2.

Visual inspection of the plasma glucose and insulin simulations following the AA challenges and protein

ingredients displays good agreement with the measured data. In general, our newmodel is able to capture

the postprandial glucose and insulin following AA challenges, as well as protein ingredients. In addition,

our model is also able to capture individual glucose and insulin concentrations following the intake of pro-

tein ingredients, being able to capturemore pronounced glucose and insulin responses (Figure 2A, subject

9), but also less prominent responses (Figure 2A, subject 3).

E-DES-PROT improves upon the original E-DES model in capturing glucose dynamics

following the intake of AA + glucose and dairy products

We investigated whether our newly developedmodel was able to capturemeals that in addition to AAs and

protein also contained glucose and carbohydrates. The E-DES-PROT model was compared to the original

E-DES model using the AIC and BIC, with the lowest AIC and BIC value pertaining to the preferred model.

Amino acids + glucose challenge

The simulated glucose and insulin responses using the original E-DES and the newly developed E-DES-

PROT model, parameterized on the AA + glucose challenges (1 mmol/kg body weight +25 g glucose),

are shown in Figure 3. For the original E-DES model, parameters (k1, k5, k6, and k8) were estimated. For

the E-DES-PROT model, these model parameters were estimated in conjunction with the model parame-

ters accounting for AAs (k11–k13). The measured plasma AA concentration (pertaining to the challenge)

was interpolated and provided to the model as an input.9

Visual inspection of the plasma glucose and insulin simulations following the AA + glucose challenges dis-

plays good agreement with the measured data using the E-DES and E-DES-PROTmodel. The E-DES-PROT

model is able to capture AA + glucose challenges and improves in capturing the measured postprandial

glucose data (Figure 3, AIC, 1.05 and �1.45; BIC, 3.31 and 2.50 for E-DES, and E-DES-PROT, respectively,

across all challenges). For glycine + glucose (Figure 3A), the improvement pertained to the period from

60 min after intake onward, whereas the E-DES-PROT model improved the overall postprandial glucose

response for isoleucine + glucose (Figure 3B). The postprandial insulin data were nicely captured using

both models. Thus, both the E-DES and E-DES-PROT model are able to describe postprandial responses

to simple meal challenges consisting of single AAs co-ingested with glucose. The complete overview of the

AIC and BIC for the AA + glucose challenges using the E-DES and E-DES-PROTmodel is shown in Table S1.

Dairy products

The simulated glucose and insulin responses using the original E-DES and the newly developed E-DES-

PROT model, parameterized on responses to selected dairy food products (i.e. low-fat untreated milk

(LF-UHT) and yoghurt) containing 25 g of protein and a variable amount of carbohydrates in a 700 mL so-

lution, are shown in Figure 4. Here, the leftmost column pertains to the average population responses,

whereas the other columns show selected individual responses highlighting striking model behavior.

The complete overview of the individual glucose and insulin responses for the dairy products (i.e. LF-

UHT, LF-PAS, FF-UHT, FF-PAS, and yoghurt) is shown in Data S3. For the original E-DESmodel, parameters

(k1, k5, k6, and k8) were estimated. For the E-DES-PROT model, these parameters were estimated in

conjunction with the model parameters accounting for AAs (k11–k13). The measured plasma AA concen-

tration (pertaining to the challenge) was interpolated and provided to the model as an input.9

The plasma glucose and insulin simulations following LF-UHT and yoghurt ingestion are in good agree-

ment with the measured data using the E-DES-PROT model. In particular, the original E-DES model was

less able to capture the measured postprandial glucose data compared to the E-DES-PROT model (Fig-

ure 4, AIC, 16.01 and �5.44; BIC, 17.21 and �3.32 for E-DES and E-DES-PROT, respectively, across all chal-

lenges). Whereas the first glucose data point after intake (t = 15 min) is accurately captured with the original

E-DESmodel, the remainder of the response is not, and appears to overshoot themeasured concentration.

The postprandial insulin data were captured well using both models. Looking at the individual level, the

E-DES-PROT model was able to capture a wide variety of measured postprandial glucose and insulin re-

sponses. Here, the E-DES-PROT model was better able to capture the measured data, for instance for sub-

ject 3, 10 (Figure 4A) and subject 3, 5 (Figure 4B). The E-DES-PROT model thus allows capture of more
iScience 26, 106218, March 17, 2023 3



Figure 2. Plasma glucose and insulin simulation following intake of whey protein concentrate (WPC) and micellar

casein isolate (MCI) in the average healthy study population and selected individuals

The model parameters pertaining to amino acids (AAs, k11–k13) were estimated, whereas the other model parameters were

kept to their original population value. The tAA input is shown in black (data and polynomial interpolation). The simulated

glucose and insulin concentrations are shown in red and blue, respectively. The measured concentrations, obtained from

Horstman et al.,14 are shown as black asterisks with corresponding standard errors of themeans. The leftmost column in panel

(A and B) pertains to average study population, whereas the other columns represent selected individuals.
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complex meals containing protein as well as carbohydrates, which the original E-DES model was unable to

do. The complete overview of the AIC and BIC for the dairy products using the E-DES and E-DES-PROT

model is shown in Table S2.

Model fluxes were compared between E-DES-PROT and the original E-DESmodel following LF-UHT intake

in the average healthy population (Figure S1). The fluxes for endogenous glucose production and insulin-

dependent glucose uptake increased more in the E-DES-PROT model compared to the original E-DES

model. Despite the small increase in the insulin-dependent glucose uptake flux, a minor change greatly

affects the postprandial glucose and insulin concentrations (Figure S2). In addition, model fluxes were

compared for different types of meals, ranging from simple AA challenges to more complex dairy products

in the average healthy study populations, using the E-DES-PROT model (Figure 5).

The glucose appearance in the gut appears to be more spread out following LF-UHT intake, as compared

to leucine + glucose co-ingestion, which has an earlier peak. Insulin secretion and insulin-dependent
4 iScience 26, 106218, March 17, 2023



Figure 3. Plasma glucose and insulin simulation following intake of different amino acids (AAs) together with

glucose in healthy individuals, using the original E-DES and E-DES-PROT model

The AA input is shown in black (data and polynomial interpolation). The simulated glucose and insulin concentrations

following parameter estimation (k1, k5, k6, and k8) using the original E-DES model, are shown in dashed red and blue,

respectively. The simulated glucose and insulin concentrations following parameter estimation (k1, k5, k6, k8, and k11–

k13) using the E-DES-PROT model, are shown in red and blue, respectively. The other model parameters were kept to

their original population value. The measured concentrations, obtained from Sloun et al.,13 are shown as black asterisks

with corresponding standard errors of the means.
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glucose uptake are substantially lower for leucine and micellar casein isolate ingestion compared to co-

ingestion of leucine with glucose and LF-UHT intake, with the largest peak in insulin secretion in the latter.

Furthermore, a clear increase from baseline in endogenous glucose production is observed for micellar

casein isolate intake, in contrast to LF-UHT and in particular leucine + glucose, which shows the largest

decrease from baseline. Leucine ingestion alone only slightly increased endogenous glucose production.

DISCUSSION

Dietary protein and AAs play an important role in glucose metabolism through stimulating both insulin and

glucagon secretion.13,15,16 In this study, we developed a novel computational model of the glucose-insulin

regulatory system, taking the effects of AAs into account, and used this novel model to describe postpran-

dial glucose and insulin dynamics following a variety of simple to complex meals containing AAs and pro-

tein. Here, we show that our E-DES-PROT model accurately describes the measured glucose and insulin

concentrations, allows insight into the underlying model fluxes, and outperforms the original E-DES model

that only takes the postprandial effects of glucose ingestion into account.
iScience 26, 106218, March 17, 2023 5



Figure 4. Plasma glucose and insulin simulation following intake of low-fat untreated treated milk (LF-UHT) and

yoghurt in the average healthy study population and selected individuals using the original E-DES and E-DES-

PROT model

The tAA input is shown in black (data and polynomial interpolation). The simulated glucose and insulin concentrations

following parameter estimation (k1, k5, k6, and k8) using the original E-DES model, are shown in dashed red and blue,

respectively. The simulated glucose and insulin concentrations following parameter estimation (k1, k5, k6, k8, and k11–

k13) using the E-DES-PROT model, are shown in red and blue, respectively. The other model parameters were kept to

their original population value. The measured concentrations, obtained from Horstman et al.,14 are shown as black

asterisks with corresponding standard errors of the means. The leftmost column in panel A & B pertains to average study

population, whereas the other columns represent selected individuals.
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The E-DES model by Maas et al.7 was selected as a basis for model extension due to its relatively simple

description of glucose metabolism. Other models that have previously been reported such as the model

of Dalla Man et al.6 require data derived from complex, costly measurements (i.e. stable isotope studies)

to allow estimation of its model parameters, making it challenging for models to parameterize. In

contrast, the E-DES model is less complex in terms of the number of parameters included in the model,

and has so far been shown to describe glucose homeostasis in different populations as well as individ-

uals, while including the most important metabolic fluxes.7,9,11 The present E-DES-PROT model intro-

duces several novel terms accounting for the postprandial effects of both individual and total AAs on

glucose and insulin regulation. More specifically, the equation regulating liver glucose production was

extended to increase glucose output with increasing plasma AA levels, representing the physiological

effects of AAs on glucagon secretion, and consequently hepatic glucose output.17 Secondly, the equa-

tion regulating pancreatic insulin secretion was extended to increase insulin secretion with increasing

plasma AA levels, representing the physiological effects of AAs on b-cells, causing a rise in the ATP/

ADP ratio, ultimately leading to the stimulation of insulin granule exocytosis.18 These extensions were

necessary to capture the characteristics of the postprandial data, while adhering to established human

physiology.17,19 To prevent the development of an overly complex model, we modeled these processes

using simple linear and derivative terms; in this way, the model can still be readily individualized using

standard plasma glucose, insulin, and AA measurements. With the addition of only three parameters,

the E-DES-PROT model was able to accurately capture postprandial glucose and insulin data following

various challenge tests containing AAs and protein ingredients. The E-DES-PROT model outperforms the
6 iScience 26, 106218, March 17, 2023



Figure 5. Model fluxes following intake of various meal challenges in the average healthy study populations using

the E-DES-PROT model

The corresponding model fluxes pertaining to the E-DES-PROT model simulations for leucine (green), micellar casein

isolate (blue), leucine + glucose (brown), and LF-UHT (red) intake are shown in panels (A–D).
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original E-DES model in capturing postprandial glucose data, particularly in the case of the dairy chal-

lenges, where both AIC and BIC showed a preference for the E-DES-PROT model. For the AA + glucose

challenges, both E-DES and E-DES-PROT were able to accurately capture the insulin response, explain-

ing why the AIC and BIC preferred the E-DES model. However, in contrast to the insulin response, the

E-DES model was not able to accurately capture the glucose responses. These results confirm the neces-

sity of including the effects of AAs and protein in the models to be able to capture glycemic responses to

foods such as to yoghurt. A model based on E-DES that incorporates dietary fat has been developed in

parallel and was recently published.20 A next step would be to merge these two models into a model

able to fully capture the effects of a complex meal, taking into account all three major macronutrient

classes (i.e. carbohydrate, protein, and fat).21

Despite only slightly improving in capturing the glucose response following AA + glucose challenges,

the E-DES-PROT model is physiologically more accurate and provides more detailed insight into the

underlying physiological processes (i.e. insulin secretion and endogenous glucose production). Besides

being able to describe average postprandial responses to the various challenges, the E-DES-PROT

showed the ability to reproduce a wide variety of individual postprandial glucose and insulin responses

as well. However, there were some exceptions in which the model did not perfectly capture certain in-

dividual postprandial responses. This was observed for responses in which the data points following

meal ingestion (t = 0) were below basal glucose concentration (e.g. participant 5, Figure 4B). Further-

more, the model struggled accurately predicting an intermediate dip in the glucose response (e.g.

participant 5, Figure 4A).

The mechanistic nature of the model also allows the investigation of non-measured variables such as

metabolite fluxes between tissues. Inspecting the metabolite fluxes, we found that there was an increase

in insulin-dependent glucose uptake using the E-DES-PROTmodel compared to the original E-DESmodel,

resulting in accurate description of the postprandial glucose data. The model fluxes calculated for various

meals included in this study provide information on physiological processes underlying the dynamic re-

sponses. For example, glucose appearance in the gut seems to be more spread out for the dairy product

(i.e. LF-UHT) compared to the simpler AA + glucose co-ingestion test (i.e. leucine + glucose). Furthermore,

endogenous glucose production was increased for protein-only meals (i.e. micellar casein isolate), corre-

sponding with findings from literature.15,22 While beyond the scope of the present study, investigating

model parameters and corresponding fluxes at the individual level with the new E-DES-PROT model might

provide further insight into the glucometabolic status of individuals.
iScience 26, 106218, March 17, 2023 7
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In conclusion, we present a new physiology-based computational model of the glucose homeostasis that

extends the E-DESmodel with the postprandial effects of AAs and protein. The E-DES-PROTmodel allows,

for the first time, to accurately describe postprandial responses following different AA challenges (with and

without co-ingestion of glucose), dried milk protein ingredients, and dairy challenges, and is able to pro-

vide information on physiological processes underlying the meal responses. Introducing AAs in these

models is important to move toward describing physiologically relevant complex meals. In addition, our

model outperforms the original E-DES model in terms of describing postprandial glucose responses

following dairy products. As the model covers two out of three macronutrient classes (carbohydrates

and protein), future studies should explore the possibility to further extend the E-DES-PROT model with

fat to allow model-based prediction of glucose responses to complex meals varying in macronutrient

composition and content.
Limitations of the study

The increased liver glucose output was modeled to be dependent on the AA concentration in the

plasma. However, AAs are known to stimulate glucagon secretion, which in turn increases liver glucose

output.17 As glucagon is not explicitly accounted for in the E-DES model, future work should consider

incorporating glucagon in the E-DES model, as has been implemented before in the Dalla Man model.23

Secondly, as the objective of our research was to quantify the effect of AAs on postprandial glucose-in-

sulin dynamics, a forcing function is used to describe the rate of appearance of AAs in E-DES-PROT. In

future research, the addition of a function to explicitly describe the rate of appearance could increase the

functionality of our model. This rate of appearance function would allow simulation of plasma AAs,

without the need for measured plasma AAs to be provided as input. Furthermore, this would allow

refinement of the glucose rate of appearance, as protein (and fat) has been known to delay gastric

emptying.24

Individual AAs have been shown to have distinct effects on the glucose and insulin response,13,19 but also

interact with each other when provided together.25 In this study, we added up the AA profiles (tAA) for the

protein ingredients and dairy products, and did not include possible interactions between individual AAs in

the E-DES-PROT model. Furthermore, not only AAs but also fat influences the blood glucose response in

response to complex meals.26,27 However, incorporating the postprandial effects of fat on glucose meta-

bolism was beyond the scope of this present study. Identifiability analysis showed that the parameters

related to AAs (k11–k13) were identifiable for AA challenges and milk protein ingredients (examples are

shown in Figure S3). However, for the AA + glucose challenges as well as for the dairy products, only the

parameters k1, k5, k6, k8, and k13 were consistently deemed identifiable. The unidentifiability of the k11

and k12 parameter in several of these challenges might have resulted from functional relationships

between parameters.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB 2018b The MathWorks Inc. https://nl.mathworks.com/products/matlab.html

Other

Original E-DES-PROT Model code This paper Data S1, https://github.com/BartvSloun/E-DES-PROT
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact Bart van Sloun (bart_van_sloun@hotmail.com).

Material availability

No new materials or reagents were generated during this study.

Data and code availability

d The data of the randomized single-blind crossover trial study (NCT02546141) are available to eligible re-

searchers from Thom Huppertz (Thom.Huppertz@frieslandcampina.com).

d All original code is provided in the supplementary materials (Data S1) and has also been deposited in

GitHub (https://github.com/BartvSloun/E-DES-PROT).

d All additional information required to re-analyze the data reported in this paper is available from the lead

contact upon request
METHOD DETAILS

Study workflow

The study workflow is illustrated in Figure S4. Briefly, the existing E-DES model was extended to a model

that accounts for the postprandial effects of AAs and protein on glucose and insulin dynamics. Model equa-

tions were adjusted and additional parameters were introduced to take the effects of AAs on insulin secre-

tion and liver glucose production, as observed from literature, into account. Subsequently, postprandial

time-series data, extracted from the literature,13 and obtained from a previously performed randomized,

single-blind crossover trial in healthy elderly males and females (RCT; NCT02546141)14 were used to esti-

mate the model parameters. The ability of the model to describe the measured data was evaluated using

the sum of squared residuals (SSR), the Akaike Information Criterion (AIC) and the Bayesian Information Cri-

terion (BIC). Model fluxes were compared between the E-DES and the newly developed E-DES-PROT

model, as well as for various meal challenges.

Collection of data

Publicly available datasets, containing postprandial time-series data of AAs, glucose, and insulin following

various AA challenge tests (leucine, isoleucine, lysine, glycine, proline, and phenylalanine; with or without

glucose) in healthy individuals were included in the present study (summarized in13). In all experiments,

plasma samples were taken from the antecubital vein in the fasting state (t=0) and 10, 20, 30, 40, 50, 60,

70, 80, 90, 100, 110, 120, and 150 minutes after ingestion of 1 mmol AA per kg of lean body weight (with

or without 25g glucose). In addition, we used data on postprandial AAs (arginine, glutamine, serine, aspar-

agine, glycine, threonine, alanine, methionine, proline, lysine, aspartic acid, histidine, valine, glutamic acid,

tryptophan, leucine, phenylalanine, isoleucine, cysteine and tyrosine), glucose, and insulin time-series from

a randomized single-blind crossover trial (RCT; NCT02546141), in which ten participants (five male)

received two spray dried milk protein ingredients (whey protein concentrate, WPC; micellar casein isolate,

MCI) and six dairy products (low-fat untreated milk (LF-UHT); low-fat pasteurized milk (LF-PAS); full-fat
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untreated milk (FF-UHT); full-fat pasteurized milk (FF-PAS); low-fat yoghurt; full-fat cheese) in random

order, as previously described.14 The dairy products and protein ingredients were supplied on eight

separate test days, with a one-week washout period in between. For each meal, an appropriate

amount of the product to ensure 25g of protein intake was consumed. For the milk protein ingredients

(i.e. WPC and MCI), this was achieved by dissolving an appropriate amount of powder in water to attain

a solution of 700mL containing 25g of protein. To standardize the volume for all products, water was added

to a total of 700mL of volume ingested. Plasma samples were taken from the antecubital vein in the fasting

state (t=0) and 15, 30, 45, 60, 75, 90, 105, 120, 150, 180, 210, 240, and 300minutes after ingesting the protein

ingredients and dairy products. An overview of the datasets included in the present study is given in

Table S3.
Development of a novel physiology-based computational model of glucose homeostasis

The Eindhoven Diabetes Education Simulator (E-DES, version 1.1) published by Maas et al.7,9 formed the

basis for the model extension with AAs in the present study. The E-DES model is a physiology-based

computational model of the glucose regulatory system in healthy individuals and patients with type 1

and type 2 diabetes.10 It consists of a system of coupled differential equations, which describe the change

of the mass or concentration of either glucose or insulin over time. Each of these equations consists of a

positive inflow and negative outflow term and can be summarized as follows: (i) glucose balance in the

gut is determined through the inflow of glucose mass from the stomach and glucose leaving the gut

through uptake by the plasma (ii) glucose balance in the plasma is determined by glucose inflow from

the gut in conjunction with glucose output from the liver and glucose uptake by insulin-(in)dependent tis-

sues (iii) insulin balance in the plasma is determined by inflow of endogenously produced insulin from the

pancreas and uptake of insulin by the interstitial fluid (iv) insulin balance in the interstitial fluid is determined

by insulin inflow from the plasma and removal of insulin from the interstitial fluid proportional to the inter-

stitial insulin fluid concentration. The rates through which these processes occur are controlled by param-

eters (denoted with k), which have been estimated and validated on multiple oral glucose tolerance tests

(OGTTs) in healthy populations.10 The model parameters are described in Table S4. The model inputs,

equations, fluxes, constants are described in detail in Data S4.
Model development

In this study, we extended the previously developed E-DES model to also account for the postprandial ef-

fects of AAs on glucose and insulin dynamics (illustrated in Figure S5). Firstly, the equation regulating

glucose production from the liver (Equation 1) was extended with a proportional (k11) term to accommo-

date an increase in liver glucose production proportional to the AA concentration present in the plasma

(AApl(t)) relative to the basal concentration (AAb
pl).

glivðtÞ = gliv
b � k3

�
GplðtÞ � Gpl

b

�
� k4b

�
Iif ðtÞ

�
+ k11

�
AAplðtÞ � AApl

b

�
(Equation 1)

Secondly, the equation regulating insulin secretion from the pancreas (Equation 2) was extended with a de-

rivative (k12) and proportional (k13) term to accommodate an increase in insulin secretion (i) based on the

rate of change of plasma AAs (dAA
pl

dt

�
, and (ii) proportional to the AA concentration present in the plasma

(AApl(t)) relative to the basal concentration (AAb
pl).

ipnc
�
t
�

= b� 1
�
k6
�
Gpl

�
t
�
� G

pl

b

�
+
�k7
ti

�Z �
Gpl

�
t
�
� Gpl

b

�
dt +

�k7
ti

�
Gpl

b +

�
k8td

�dGpl

dt
+ k12

dAApl

dt
+ k13

�
AApl

�
t
�
� AApl

b

��
(Equation 2)

The extended Equations 1 and 2 described above require plasma AA concentrations as model input.

Therefore, measured AA concentrations following the challenge tests were interpolated via a fitted piece-

wise cubic Hermite interpolating polynomial (pchip), and provided to the model as AApl(t). For the RCT

(NCT02546141), the following AA measurements were added up, interpolated, and denoted as total AA

(tAA): arginine, glutamine, serine, asparagine, glycine, threonine, alanine, methionine, proline, lysine, as-

partic acid, histidine, valine, glutamic acid, tryptophan, leucine, phenylalanine, isoleucine, cysteine, and

tyrosine.
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Model calibration

Model calibration was performed by generating parameter values that resulted in an optimal description of

measured data. This was done through minimizing a cost function, representing the sum of squared resid-

ual (SSR) in the model prediction for glucose and insulin (Equation 3). The SSR is minimized using lsqnonlin,

a local, gradient-based least squares solver in MATLAB (Version R2018b). Optimal parameter sets were ob-

tained using twenty-five initializations of the optimization algorithm with 25% random noise starting from

the original parameter value for the average healthy population.9

SSR =
Xm
j = 1

XN
i = 1

�
g
��

yi;j
��� q!�

� di;j

��2

(Equation 3)

Where m, and N represent the number of metabolites and the number of time-points, respectively. The

measured data is denoted by d, while y is the corresponding model prediction given the parameter vector

q
!
. A weight factor g = 0.1 was used in the case of insulin (g = 1 in case of glucose) to account for the unit

difference (mmol/L, mU/L for glucose and insulin, respectively) between the molecules. As the lsqnonlin

function, that minimizes the sum of squared error, does this simultaneously for glucose and insulin, the

g factor aims to bring the units for glucose and insulin closer together to avoid prioritizing one or the other

in the optimization process.
Model selection and analysis

Visual inspection was performed to evaluate the goodness-of-fit of the simulated glucose and insulin re-

sponses to the measured data. In order to compare the E-DES and the E-DES-PROT model, we selected

the parameters identified from our previous work.11 In that work, a systematic model selection pipeline

was implemented to allow personalization of the E-DESmodel through reducing the number of parameters

to be estimated, resulting in a model containing parameters k1, k5, k6, and k8 (sensitivity is shown in Fig-

ure S6). In the current work, we estimated those parameters, both for the systematic review datasets and

the randomized single-blind crossover trial. The selected parameters represent distinct physiological pro-

cesses involved in glucose and insulin regulation, described in Table S4. For the E-DES-PROT model simu-

lation, the AA parameters (k11-k13) were also estimated. Parameters Gb
pl and Ib

pl (sensitivity is shown in

Figure S7) were set to be equal to the first data-point (t = 0 min) of the measured responses, whereas

the other parameters were set to the average healthy population values from the original publication.9

Model performance was evaluated using the Akaike Information Criterion (AIC) and the Bayesian Informa-

tion Criterion (BIC), in which model complexity (i.e. number of estimated parameters) was penalized (Equa-

tions 4 and 5 respectively).

AIC = N � ln
�
SSR

N

�
+ 2 � K (Equation 4)
BIC = N � ln
�
SSR

N

�
+ lnðNÞ � K (Equation 5)

N represents the number of observations, and K the number of parameters. Given a set of candidate

models that describe the postprandial time-series data, the preferred model is the one with the lowest

AIC and BIC value, indicating the better-fit model whilst taking the number of parameters into account.

In addition, model fluxes were calculated and compared between the E-DES and E-DES-PROT model,

as well as for the various meal challenges. Parameter identifiability was assessed using Profile Likelihood

Analysis (PLA). In PLA, the value of one parameter is changed iteratively from its optimal value and the re-

maining parameters are re-estimated. An increase in the cost function for the model fit indicates that a reli-

able parameter estimate has been obtained and the parameter is identifiable given the model structure

and data.
Computer software

The model was implemented and analyzed in MATLAB (MATLAB, Version R2018b, The Mathworks, Inc.,

Natick, Massachusetts, United States). The ordinary differential equation model was simulated using the

variable step solver ode15s.
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