35 research outputs found

    Cardiovascular disease risk assessment using a deep-learning-based retinal biomarker: a comparison with existing risk scores

    Get PDF
    Aims: This study aims to evaluate the ability of a deep-learning-based cardiovascular disease (CVD) retinal biomarker, Reti-CVD, to identify individuals with intermediate- and high-risk for CVD. Methods and results: We defined the intermediate- and high-risk groups according to Pooled Cohort Equation (PCE), QRISK3, and modified Framingham Risk Score (FRS). Reti-CVD’s prediction was compared to the number of individuals identified as intermediate- and high-risk according to standard CVD risk assessment tools, and sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated to assess the results. In the UK Biobank, among 48 260 participants, 20 643 (42.8%) and 7192 (14.9%) were classified into the intermediate- and high-risk groups according to PCE, and QRISK3, respectively. In the Singapore Epidemiology of Eye Diseases study, among 6810 participants, 3799 (55.8%) were classified as intermediate- and high-risk group according to modified FRS. Reti-CVD identified PCE-based intermediate- and high-risk groups with a sensitivity, specificity, PPV, and NPV of 82.7%, 87.6%, 86.5%, and 84.0%, respectively. Reti-CVD identified QRISK3-based intermediate- and high-risk groups with a sensitivity, specificity, PPV, and NPV of 82.6%, 85.5%, 49.9%, and 96.6%, respectively. Reti-CVD identified intermediate- and high-risk groups according to the modified FRS with a sensitivity, specificity, PPV, and NPV of 82.1%, 80.6%, 76.4%, and 85.5%, respectively. Conclusion: The retinal photograph biomarker (Reti-CVD) was able to identify individuals with intermediate and high-risk for CVD, in accordance with existing risk assessment tools

    Atmospheric-Pressure Plasma Jet Induces Apoptosis Involving Mitochondria via Generation of Free Radicals

    Get PDF
    The plasma jet has been proposed as a novel therapeutic method for anticancer treatment. However, its biological effects and mechanism of action remain elusive. Here, we investigated its cell death effects and underlying molecular mechanisms, using air and N2 plasma jets from a micro nozzle array. Treatment with air or N2 plasma jets caused apoptotic death in human cervical cancer HeLa cells, simultaneously with depolarization of mitochondrial membrane potential. In addition, the plasma jets were able to generate reactive oxygen species (ROS), which function as surrogate apoptotic signals by targeting the mitochondrial membrane potential. Antioxidants or caspase inhibitors ameliorated the apoptotic cell death induced by the air and N2 plasma jets, suggesting that the plasma jet may generate ROS as a proapoptotic cue, thus initiating mitochondria-mediated apoptosis. Taken together, our data suggest the potential employment of plasma jets as a novel therapy for cancer

    Comparison of Higher-Order Aberration and Contrast Sensitivity in Monofocal and Multifocal Intraocular Lenses

    Get PDF
    PURPOSE: The visual performance of pseudophakic eyes depends on the type of intraocular lenses (IOLs) that are implanted. Aspherical and multifocal IOLs have recently been developed to improve visual quality after cataract surgery, but multifocal IOLs can be associated with decreased contrast sensitivity (CS), halos, and glare. This study compares the visual performance of monofocal and multifocal IOLs by measurement of higher-order aberrations (HOAs) and CS values. MATERIALS AND METHODS: HOAs and CS values of 42 eyes with implanted monofocal IOLs and 40 eyes with implanted multifocal IOLs were measured preoperatively and more than 6 months after surgery. In the multifocal IOL group, HOAs and CS values were also measured with addition of a trial lens of -0.5 diopter (D) to evaluate the compensatory effect on spherical aberration. RESULTS: CS values of the multifocal IOL group were significantly lower than those of the monofocal IOL group for all spatial frequencies tested (p<0.01), and the spherical aberration was significantly higher in the multifocal IOL group than in the monofocal IOL group (p<0.001). Addition of a -0.5 D lens to the multifocal IOL group decreased the difference in CS between the two groups (p=0.003). CONCLUSION: Increased spherical aberration may contribute to lower CS in the multifocal IOL group. In such cases, CS can be improved by addition of a -0.5 D lens to compensate for the spherical aberration.ope

    Cardiovascular disease risk assessment using a deep-learning-based retinal biomarker: a comparison with existing risk scores.

    Get PDF
    AimsThis study aims to evaluate the ability of a deep-learning-based cardiovascular disease (CVD) retinal biomarker, Reti-CVD, to identify individuals with intermediate- and high-risk for CVD.Methods and resultsWe defined the intermediate- and high-risk groups according to Pooled Cohort Equation (PCE), QRISK3, and modified Framingham Risk Score (FRS). Reti-CVD's prediction was compared to the number of individuals identified as intermediate- and high-risk according to standard CVD risk assessment tools, and sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated to assess the results. In the UK Biobank, among 48 260 participants, 20 643 (42.8%) and 7192 (14.9%) were classified into the intermediate- and high-risk groups according to PCE, and QRISK3, respectively. In the Singapore Epidemiology of Eye Diseases study, among 6810 participants, 3799 (55.8%) were classified as intermediate- and high-risk group according to modified FRS. Reti-CVD identified PCE-based intermediate- and high-risk groups with a sensitivity, specificity, PPV, and NPV of 82.7%, 87.6%, 86.5%, and 84.0%, respectively. Reti-CVD identified QRISK3-based intermediate- and high-risk groups with a sensitivity, specificity, PPV, and NPV of 82.6%, 85.5%, 49.9%, and 96.6%, respectively. Reti-CVD identified intermediate- and high-risk groups according to the modified FRS with a sensitivity, specificity, PPV, and NPV of 82.1%, 80.6%, 76.4%, and 85.5%, respectively.ConclusionThe retinal photograph biomarker (Reti-CVD) was able to identify individuals with intermediate and high-risk for CVD, in accordance with existing risk assessment tools

    Validation of a deep-learning-based retinal biomarker (Reti-CVD) in the prediction of cardiovascular disease: data from UK Biobank

    Get PDF
    BackgroundCurrently in the United Kingdom, cardiovascular disease (CVD) risk assessment is based on the QRISK3 score, in which 10% 10-year CVD risk indicates clinical intervention. However, this benchmark has limited efficacy in clinical practice and the need for a more simple, non-invasive risk stratification tool is necessary. Retinal photography is becoming increasingly acceptable as a non-invasive imaging tool for CVD. Previously, we developed a novel CVD risk stratification system based on retinal photographs predicting future CVD risk. This study aims to further validate our biomarker, Reti-CVD, (1) to detect risk group of ≥ 10% in 10-year CVD risk and (2) enhance risk assessment in individuals with QRISK3 of 7.5-10% (termed as borderline-QRISK3 group) using the UK Biobank.MethodsReti-CVD scores were calculated and stratified into three risk groups based on optimized cut-off values from the UK Biobank. We used Cox proportional-hazards models to evaluate the ability of Reti-CVD to predict CVD events in the general population. C-statistics was used to assess the prognostic value of adding Reti-CVD to QRISK3 in borderline-QRISK3 group and three vulnerable subgroups.ResultsAmong 48,260 participants with no history of CVD, 6.3% had CVD events during the 11-year follow-up. Reti-CVD was associated with an increased risk of CVD (adjusted hazard ratio [HR] 1.41; 95% confidence interval [CI], 1.30-1.52) with a 13.1% (95% CI, 11.7-14.6%) 10-year CVD risk in Reti-CVD-high-risk group. The 10-year CVD risk of the borderline-QRISK3 group was greater than 10% in Reti-CVD-high-risk group (11.5% in non-statin cohort [n = 45,473], 11.5% in stage 1 hypertension cohort [n = 11,966], and 14.2% in middle-aged cohort [n = 38,941]). C statistics increased by 0.014 (0.010-0.017) in non-statin cohort, 0.013 (0.007-0.019) in stage 1 hypertension cohort, and 0.023 (0.018-0.029) in middle-aged cohort for CVD event prediction after adding Reti-CVD to QRISK3.ConclusionsReti-CVD has the potential to identify individuals with ≥ 10% 10-year CVD risk who are likely to benefit from earlier preventative CVD interventions. For borderline-QRISK3 individuals with 10-year CVD risk between 7.5 and 10%, Reti-CVD could be used as a risk enhancer tool to help improve discernment accuracy, especially in adult groups that may be pre-disposed to CVD

    Smart Contract Data Feed Framework for Privacy-Preserving Oracle System on Blockchain

    No full text
    As blockchain-based applications and research such as cryptocurrency increase, an oracle problem to bring external data in the blockchain is emerging. Among the methods to solve the oracle problem, a method of configuring oracle based on TLS, an existing internet infrastructure, has been proposed. However, these methods currently have the disadvantage of not supporting privacy protection for external data, and there are limitations in configuring the process of a smart contract based on external data verification for automation. To solve this problem, we propose a framework consisting of middleware of external source server, data prover, and verification contract. The framework converts the data signed in the web server into a proof that the owner can prove with zk-SNARKs and provides a smart contract that can verify this. Through these procedures, data owners not only protect their privacy by proving themselves, but they can also automate on-chain processing through smart contract verification. For the proposed framework, we create a proof using libsnark for server data and show the performance and cost to verify with Solidity the smart contract language of the Ethereum platform

    Cold Atmospheric Pressure Microplasma Pipette for Disinfection of Methicillin-Resistant Staphylococcus aureus

    No full text
    Microbial infections should be controlled and prevented for successful wound healing and tissue regeneration. Various disinfection methods exist that use antibiotics, ultraviolet (UV), heat, radiation, or chemical disinfectants; however, cold atmospheric pressure plasma has exhibited a unique and effective antibacterial ability that is not affected by antibiotic resistance or pain. This study develops a cold atmospheric pressure microplasma pipette (CAPMP) that outputs an Ar plasma plume through a tube with an inner radius of 180 μm for disinfection in a small area. The CAPMP was evaluated using Staphylococcus aureus and methicillin-resistant Staphylococcus aureus diluted in liquid media, spread on solid agar, or covered by dressing gauze. An increase in the treatment time of CAPMP resulted in a decrease in the number of colonies of the grown microorganism (colony forming unit) and an increase in the disinfected area for both bacteria. The disinfection ability of CAPMP was observed when the bacteria were covered with dressing gauze and was dependent on the number of gauze layers

    Using replication and checkpointing for reliable task management in computational Grids

    No full text
    International audienceIn large-scale Grid computing environments, providing fault-tolerance is required for both scientific computation and file-sharing to increase their reliability. In previous works, several mechanisms were proposed for the Grids or distributed computing systems. However, some of them used only space redundancy (hardware replication), and others used only time redundancy (checkpointing and rollback). For this reason, the existing mechanisms are inefficient in terms of their resource utilization on the Grids. The main goal of ART is reducing the number of replications by using checkpointing and rollback scheme for each replication. In ART, the minimum number of replications is adaptively selected based on analysis of probability of successful execution within the given deadline and reliability requirement of each task. Our simulation results show that ART can significantly reduce the number of replications and improve scalability compared with existing mechanisms

    Stochastic switching and analog-state programmable memristor and its utilization for homomorphic encryption hardware

    No full text
    Abstract Homomorphic encryption performs computations on encrypted data without decrypting, thereby eliminating security issues during the data communication between clouds and edges. As a result, there is a growing need for homomorphic encryption hardware (HE-HW) for the edges, where low power consumption and a compact form factor are desired. Here, a Pt/Ta2O5/Mo metallic cluster-type memristors (Mo-MCM) characterized by the Mo as a mobile species, and its utilization for the HE-HW via a 1-trasistor-1-memristor (1T1M) array as a prototype HE-HW is proposed. The Mo-MCM exhibits inherent stochastic set-switching behavior, which can be utilized for generating the random numbers required for encryption key generation. Furthermore, the device can accurately store analog conductance states after set-switching, which can be used as an analog non-volatile memristor. By simultaneously leveraging these two characteristics, encryption key generation, data encryption, and decryption are possible within a single device through an in-memory computing manner

    Investigation of SiO2 Etch Characteristics by C6F6/Ar/O2 Plasmas Generated Using Inductively Coupled Plasma and Capacitively Coupled Plasma

    No full text
    The etching properties of C6F6/Ar/O2 in both an inductively coupled plasma (ICP) system and a capacitively coupled plasma (CCP) system were evaluated to investigate the effects of high C/F ratio of perfluorocarbon (PFC) gas on the etch characteristics of SiO2. When the SiO2 masked with ACL was etched with C6F6, for the CCP system, even though the etch selectivity was very high (20 ~ infinite), due to the heavy-ion bombardment possibly caused by the less dissociated high-mass ions from C6F6, tapered SiO2 etch profiles were observed. In the case of the ICP system, due to the higher dissociation of C6F6 and O2 compared to the CCP system, the etching of SiO2 required a much lower ratio of O2/C6F6 (~1.0) while showing a higher maximum SiO2 etch rate (~400 nm/min) and a lower etch selectivity (~6.5) compared with the CCP system. For the ICP etching, even though the etch selectivity was much lower than that by the CCP etching, due to less heavy-mass-ion bombardment in addition to an adequate fluorocarbon layer formation on the substrate caused by heavily dissociated species, highly anisotropic SiO2 etch profiles could be obtained at the optimized condition of the O2/C6F6 ratio (~1.0)
    corecore