29 research outputs found

    Soil compressibility under irrigated perennial and annual crops in a semi-arid environment

    Get PDF
    In irrigated soils, a continuous state of high moisture reduces resistance of the soil to applied external forces, favouring compaction. The aim of this study was to evaluate the susceptibility to compaction of developed calcareous soils in irrigated annual and perennial cropping systems of the Apodi Plateau, located in the Brazilian semi-arid region. Four areas of irrigated crops were evaluated: banana after two (B2) and 15 (B15) years cultivation, pasture (P), and a corn and beans succession (MB), as well as the reference areas for soil quality and corresponding natural vegetation (NVB2, NVB15, NVP and NVMB). Samples were collected at layers of 0.00-0.10 and 0.20-0.30 m; and for B2 and B15, samples were collected in the row and inter-row spaces. The following properties were determined: degree of compactness (DC), preconsolidation pressure (σp), compression index (Cc), maximum density (ρmax), critical water content (WCcrit), total organic carbon (TOC) and carbon of light organic matter (Clom). Mean values were compared by the t-test at 5, 10, 15 and 20 % probability. An increase was seen in DC at a layer of 0.20-0.30 m in MB (p<0.15), showing the deleterious effects of preparing the soil by ploughing and chiselling, together with the cumulative traffic of heavy machinery. The TOC had a greater influence on ρmax than the stocks of Clom. Irrigation caused a reduction in Cc, and there was no effect on σp at field capacity. The planting rows showed different behaviour for Cc, ρmax, and WCcrit,, and in general the physical properties displayed better conditions than the inter-row spaces. Values for σp and Cc showed that agricultural soils display greater load-bearing capacity and are less susceptible to compaction in relation to soils under natural vegetation

    Field-saturated hydraulic conductivity measured by two techniques and at different sampling positions relative to maize-crop rows and interrows

    Get PDF
    Field-saturated hydraulic conductivity (Ks) reflects porous system ability to transfer water in the soil-plant system. The study aimed to measure Ks through two distinct techniques. One of them was carried out in the laboratory by applying the constant-head cylinder method (CHC) in undisturbed samples, herein referred to as a standard technique. The other consisted of a simplified falling-head technique to measure Ks in situ (SFH), as proposed by Bagarello et al. (2004). We also verified the correlations of the obtained Ks values with other soil physical properties. SFH method is simpler, faster and does not require sophisticated equipment, which can be executed directly in the field. The experiment was conducted in the city of Floresta (PR), Brazil, at Cocamar Technology Diffusion Unit. It consisted of four treatments: maize-crop interrow without recent machine traffic (MI), maize-crop interrow traveled by a harvester (MIT), maize-crop row (MR) and its relative position to brachiaria crop row sown in consortium, and in maize-crop interrow (BR). In each treatment, 10 sampling points were defined (repetitions), where Ks was determined by SFH and an undisturbed sample was taken to measure Ks in the laboratory. Ks values measured by methodological approaches were compared through the following statistical indices, with their respective results: Willmott's concordance index (0.944), maximum error (1.269) and mean absolute error (0.291), square root of normalized mean error (0.45), determination coefficient (0.88), residual mass coefficient (0.07), efficiency coefficient (0.72), performance index (0.80), and Pearson's correlation (0.85). A high agreement was found between the studied techniques, with measured values close to each other. Notably, we must give emphasis on SFH since it had a variation coefficient 1.4 times lower than the standard technique

    Development of a pneumatic consolidometer: compaction modeling, penetrometry and tensile strength of soil aggregates

    Get PDF
    A compactação é um dos processos responsáveis pela degradação física do solo que pode ocasionar a perda da sustentabilidade da produção agrícola. Assim, é fundamental dispor de estratégias instrumentais para quantificar as propriedades físicas que são influenciadas pela compactação e utilizadas para avaliar a qualidade do solo. Os objetivos deste trabalho foram: desenvolver um consolidômetro com propulsão pneumática de baixo custo; avaliar sua funcionalidade mediante estudo do comportamento compressivo de um Latossolo Vermelho distrófico de textura argilo-arenosa sob plantio direto; e avaliar o potencial de utilização da propulsão pneumática para determinações de resistência do solo à penetração (RP) e de resistência tênsil de agregados (RT). A avaliação do comportamento compressivo do solo foi realizada mediante curvas de compressão, utilizando amostras indeformadas, obtidas das posições de amostragem relativas à linha e à entrelinha da cultura de aveia-preta. Nessas amostras, foram realizados ensaios de compressão uniaxial em condição de teor de água correspondente ao potencial mátrico de -10 kPa, sendo determinados o índice de compressão (IC) e a pressão de preconsolidação (&#963;p), bem como suas relações com outras propriedades físicas do solo. A RP foi determinada em amostras indeformadas de um Argissolo Vermelho-Amarelo distrófico de textura franco-arenosa sob citros. Para as determinações da RT foram utilizados agregados de dois solos: um Argissolo Acinzentado distrófico arênico coeso e um Argissolo Amarelo distrófico arênico. Os resultados mostram que a densidade do solo, antes do ensaio de compressão uniaxial, foi maior (p < 0,05) para a entrelinha da cultura de aveia-preta. A curva de compressão foi sensível às alterações estruturais do solo entre as posições de amostragem; a &#963;p e o IC indicaram, respectivamente, maior capacidade de suporte de carga e menor suscetibilidade à compactação (p < 0,05) para a entrelinha da cultura de aveia-preta. A utilização de propulsão pneumática não influenciou os resultados da RP e da RT. Isso permite concluir que a curva de compressão do solo, a RP e a RT podem ser determinadas utilizando o equipamento desenvolvido neste estudo.Soil compaction is one of the processes responsible for soil physical degradation that may result in the loss of sustainability of agricultural production. Therefore, it is important to have instrumental strategies to quantify soil physical properties that are influenced by soil compression and used to assess soil quality. The objectives of this study were to: (i) develop an inexpensive pneumatic consolidometer, (ii) evaluate its functionality by the study of the compressive behaviour of a sandy clay Rhodic Hapludox under no-tillage, (iii) evaluate the potential use of pneumatic propulsion to determine penetration resistance (PR) and tensile strength of aggregates (TS) using the proposed consolidometer. Compression curves based on undisturbed soil sampled in and between rows under black oat were used to evaluate the soil compressive behaviour. Uniaxial compression tests were performed in these samples at a soil water content corresponding to a matric potential of -10 kPa and used to determine the compression index (CI) and preconsolidation pressure (&#963;p) and their correlations with other soil physical properties. PR of undisturbed samples of a sandy loam soil under citrus was determined. Aggregates from two Ultisols were used to determine TS in a hardsetting and a non-hardsetting horizons. Results showed that soil bulk density before the uniaxial compression test was higher (p < 0.05) in-between the black oat rows. The compression curve was sensitive to differences in soil structure between sampling positions, and &#963;p and CI indicated, respectively, higher load support and less susceptibility to compaction (p < 0.05) in-between the black oat rows. The use of pneumatic propulsion did not influence the results of PR and TS. Therefore, the soil compression curve, PR and TS can be determined with the equipment developed in this study

    Physical resilience of two red oxisols under no-tillage

    Get PDF
    A resiliência física de solos é proveniente de processos regenerativos que incluem ciclos de umedecimento e secamento, congelamento e descongelamento, assim como as atividades biológicas. Este estudo testou a hipótese de que as propriedades físicas do solo, como a permeabilidade do solo ao ar, densidade do solo, porosidade de aeração e porosidade total, são indicadores físicos eficientes para quantificar a resiliência de solos de diferentes texturas submetidos ao estresse mecânico (compactação) e após subsequentes ciclos de umedecimento e secamento. O objetivo foi avaliar o comportamento e a resiliência do solo por meio de propriedades físicas de dois Latossolos Vermelhos. Foram retiradas 25 amostras indeformadas (0,00-0,05 m) de dois solos: solo I, com textura argilosa, e solo II, com textura franco-argilo-arenosa, realizando as determinações das propriedades físicas nos tratamentos: antes da compactação (A), depois da compactação (C0) e após ciclos de umedecimento e secamento (C1, C2, C3 e C4). As propriedades densidade do solo e porosidade total não apresentaram recuperação da condição inicial após a compactação nos solos I e II; as propriedades conteúdo volumétrico de água e porosidade de aeração mostraram recuperação parcial apenas no solo I; e a permeabilidade do solo ao ar foi a propriedade que apresentou a melhor recuperação e a maior resiliência. Em relação ao distinto comportamento dos dois solos, observou-se que o solo I foi mais resiliente que o solo II nas propriedades que apresentaram recuperação

    Physical quality of untilled oxisol subjected to mechanical and biological decompaction

    Get PDF
    A escarificação e o uso de plantas de cobertura de inverno têm sido adotados para promover a melhoria dos atributos físicos do solo relacionados à aeração. O objetivo deste trabalho foi verificar o efeito das plantas de cobertura de inverno e escarificação nas propriedades físicas de um Latossolo Vermelho distrófico, textura argilosa, após 16 anos em sistema plantio direto. Os tratamentos foram realizados em maio de 2009 e consistiram de: plantio direto (PD), plantio direto com escarificação mecânica a 0,25 m (PD-E) e plantio direto com descompactação biológica por meio da cultura do nabo forrageiro (PD-B). O delineamento experimental foi em blocos ao acaso com quatro repetições, totalizando 12 unidades experimentais. Dezoito meses após a aplicação dos tratamentos, foram coletadas amostras indeformadas de solo em cada unidade experimental, em cinco camadas: 0,0-0,1; 0,1-0,2; 0,2-0,3; 0,3-0,4; e 0,4-0,5 m. Foram avaliados os atributos físicos do solo: porosidade, densidade do solo (Ds), permeabilidade ao ar (Ka) e índices de continuidade de poros. A Ka foi medida por meio de um permeâmetro de carga constante de ar em nove potenciais mátricos (&#968;m): -0,5; -1; -2; -3; -5; -7; -10; -50; e -100 kPa. Os resultados indicam que os atributos físicos do solo avaliados não foram alterados pelo uso de plantas de cobertura e escarificação. Por outro lado, houve diferenças entre camadas de solo, principalmente entre 0,0-0,1 e 0,1-0,2 m. Na camada de 0,1-0,2 m, a Ds foi maior e a porosidade total e Ka (&#968;m = -5 kPa) foram menores do que na camada de 0,0-0,1 m. No PD-E, verificou-se que a macroporosidade foi maior na camada de 0,0-0,1 m em comparação com os outros tratamentos. Os resultados sugerem que o solo estudado submetido aos tratamentos de descompactação, após 18 meses, retornou a valores semelhantes aos da testemunha
    corecore