14 research outputs found

    Protamine-like proteins have bactericidal activity. The first evidence in Mytilus galloprovincialis.

    Get PDF
    The major acid-soluble protein components of the mussel Mytilus galloprovincialis sperm chromatin consist of the protamine-like proteins PL-II, PL-III and PL-IV, an intermediate group of sperm nuclear basic proteins between histones and protamines. The aim of this study was to investigate the bactericidal activity of these proteins since, to date, there are reports on bactericidal activity of protamines and histones, but not on protamine-like proteins. We tested the bactericidal activity of these proteins against Gram-positive bacteria: Enterococcus faecalis and two different strains of Staphylococcus aureus, as well as Gram-negative bacteria: Proteus mirabilis, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhmurium, Enterobacter aerogenes, Enterobacter cloacae, and Escherichia coli. Clinical isolates of the same bacterial species were also used to compare their sensitivity to these proteins. The results show that Mytilus galloprovincialis protamine-like proteins exhibited bactericidal activity against all bacterial strains tested with different minimum bactericidal concentration values, ranging from 15.7 to 250 µg/mL. Furthermore, these proteins were active against some bacterial strains tested that are resistant to conventional antibiotics. These proteins showed very low toxicity as judged by red blood cell lysis and viability MTT assays and seem to act both at the membrane level and within the bacterial cell. We also tested the bactericidal activity of the product obtained from an in vitro model of gastrointestinal digestion of protamine-like proteins on a Gram-positive and a Gram-negative strain, and obtained the same results with respect to undigested protamine-like proteins on the Gram-positive bacterium. These results provide the first evidence of bactericidal activity of protamine-like-proteins

    Allium ursinum and Allium oschaninii against Klebsiella pneumoniae and Candida albicans Mono- and Polymicrobic Biofilms in In Vitro Static and Dynamic Models

    Get PDF
    The present study assesses the in vitro antibiofilm potential activity of extracts of wild Allium ursinum and Allium oschaninii. The active ingredients of the extracts were obtained with a technique named Naviglio (rapid solid–liquid dynamic extraction, RSLDE) which is based on an innovative and green solid–liquid extraction methodology. The extracts were tested against models of mono‐ and polymicrobial biofilm structures of clinically antibiotic‐resistant pathogens, Klebsiella pneumoniae ATCC 10031 and Candida albicans ATCC 90028. Biofilms were studied using a static and a dynamic model (microtiter plates and a CDC reactor) on three different surfaces reproducing what happens on implantable medical devices. Antimicrobic activities were determined through minimum inhibitory concentration (MIC), while antibiofilm activity was assessed by minimum biofilm eradication concentration (MBEC) using a crystal violet (CV) biofilm assay and colony forming unit (CFU) counts. Results showed that both Allium extracts eradicated biofilms of the tested microorganisms well; biofilms on Teflon were more susceptible to extracts than those on polypropylene and polycarbonate, suggesting that when grown on a complex substrate, biofilms may be more tolerant to antibiotics. Our data provide significant advances on antibiotic susceptibility testing of biofilms grown on biologically relevant materials for future in vitro and in vivo applications

    Microbial pathogens and strategies for combating them: science, technology and education

    No full text
    Moulds are main responsible for bread spoilage even because of its low water activity (wa). In the course of six months, we analized different kind of breads, with the aim to evaluate their content in moulds. Penicillum decumbens, Penicillum crysogenum and Pennicillum spp. were isolated from all breads sample. A modified susceptibility test was carried out to ascertain mould isolates sensitivity to Bacillus amyloliquefaciens ANT1 antimicrobials. ANT1 antimicrobial activity against potentially pathogenic bacteria and moulds was proved and the results reported elsewhere [3][4] Bread samples were artificially contaminated with the moulds isolates and ANT1. The moulds content in samples was measured after 24 h. Aspergillus niger ATCC9642 was used as positive control microorganism in test susceptibility because of its sensitivity to ANT1 antimicrobials [1][2]. ANT1 production of NRPS, PKS was also ascertained [5]. The results of our survey proved the antimicrobial activity of ANT1 against moulds responsible for bread spoilage. A possible utilization of ANT1 as bread preservative is hypothesize

    Prevention of Pseudomonas aeruginosa Biofilm Formation on Soft Contact Lenses by Allium sativum Fermented Extract (BGE) and Cannabinol Oil Extract (CBD)

    No full text
    Two natural mixtures, Allium sativum fermented extract (BGE) and cannabinol oil extract (CBD), were assessed for their ability to inhibit and remove Pseudomonas aeruginosa biofilms on soft contact lenses in comparison to a multipurpose Soft Contact Lens-care solution present on the Italian market. Pseudomonas aeruginosa (ATCC 9027 strain) and Pseudomonas aeruginosa clinical strains isolated from ocular swabs were tested. Quantification of the biofilm was done using the microtiter plate assay and the fractional inhibitory concentration index was calculated. Both forms of Pseudomonas aeruginosa generated biofilms. BGE at minimal inhibitory concentration (MIC) showed inhibition percentages higher than 55% for both strains, and CBD inhibited biofilm formation by about 70%. The care solution at MIC inhibited biofilm formation by about 50% for both strains tested. The effect of BGE on the eradication of the microbial biofilm on soft contact lenses at MIC was 45% eradication for P. aeruginosa ATCC 9027 and 36% for P. aeruginosa clinical strain. For CBD, we observed 24% biofilm eradication for both strains. For the care solution, the eradication MICs were 43% eradication for P. aeruginosa ATCC 9027 and 41% for P. aeruginosa clinical strain. It was observed that both the test soft contact lenses solution/BGE (fractional inhibitory concentration index: 0.450) and the test soft contact lenses solution/CBD (fractional inhibitory concentration index: 0.153) combinations exhibited synergistic antibiofilm activity against most of the studied bacteria. The study showed that BGE and CBD have good effect on inhibition of biofilm formation and removal of preformed biofilms, which makes them promising agents that could be exploited to develop more effective care solutions

    Pseudomonas aeruginosa in Swimming Pool Water: Evidences and Perspectives for a New Control Strategy

    No full text
    Pseudomonas aeruginosa is frequently isolated in swimming pool settings. Nine recreational and rehabilitative swimming pools were monitored according to the local legislation. The presence of P. aeruginosa was correlated to chlorine concentration. The ability of the isolates to form a biofilm on plastic materials was also investigated. In 59.5% of the samples, microbial contamination exceeded the threshold values. P. aeruginosa was isolated in 50.8% of these samples. The presence of P. aeruginosa was not correlated with free or total chlorine amount (R2 < 0.1). All the isolates were moderate- to strong-forming biofilm (Optical Density O.D.570 range 0.7–1.2). To control biofilm formation and P. aeruginosa colonization, Quantum FreeBioEnergy© (QFBE, FreeBioEnergy, Brisighella, Italy), has been applied with encouraging preliminary results. It is a new, promising control strategy based on the change of an electromagnetic field which is responsible for the proliferation of some microorganisms involved in biofilm formation, such as P. aeruginosa

    Melittin inhibition and eradication activity for resistant polymicrobial biofilm isolated from a dairy industry after disinfection

    Get PDF
    The emerging concern about the increase of antibiotic resistance and associated biofilm has encouraged scientists to look for alternative antibiotics such as antimicrobial peptides (AMPs). (is study evaluated the ability of melittin to act as an antibacterial biofilm inhibitor and biofilm remover considering isolates from dairy industry. Minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), minimum biofilm inhibitory concentrations (MBICs), and biofilm removal activities were studied in polymicrobial biofilms produced from isolates. MIC and MBC were set at 1-3 μg/mL and 25-50 μg/mL for Grampositive and Gram-negative bacteria, respectively. Results demonstrated a good MBIC reaching 85% inhibition ability and a good activity and better penetration in deeper layers against the mixed preformed biofilm, thereby increasing its activity against all isolates also at the lowest tested concentrations. Melittin showed interesting characteristics suggesting its potential to act as an antimicrobial agent for polymicrobial biofilm from dairy industry even in environmental isolates

    Integrated analysis of the ecotoxicological and genotoxic effects of the antimicrobial peptide melittin on Daphnia magna and Pseudokirchneriella subcapitata

    No full text
    Melittin is a major constituent of the bee venom of Apis mellifera with a broad spectrum of activities. Melittin therapeutical potential is subject to its toxicity and the assessment of ecotoxicity and genotoxicity is of particular interest for therapeutic use. Here we analyzed the biological effects of melittin on two aquatic species, which are representative of two different levels of the aquatic trophic chain: the invertebrate Daphnia magna and the unicellular microalgae Pseudokirchneriella subcapitata. The attention was focused on the determination of: i) ecotoxicity; ii) genotoxicity; iii) antigenotoxicity. Our main finding is that melittin is detrimental to D. magna reproduction and its sub-lethal concentrations create an accumulation dependent on exposition times and a negative effect on DNA. We also observed that melittin significantly delayed time to first eggs. Moreover, results showed that melittin exerted its toxic and genotoxic effects in both species, being a bit more aggressive towards P. subcapitata. © 2015 Elsevier Ltd All rights reserved
    corecore