16 research outputs found

    Low temperature oxidation of VOCs in air by catalytic ozonation

    Get PDF
    Alumina supported manganese oxides were used in the gas phase oxidation of toluene by ozone. Catalyst activity and characterization, the promotional effect of noble metals (Pt and Pd) on the activity of manganese oxides, and the kinetics and mechanism of the reaction were investigated in this PhD thesis. It was shown that MnO2 and Mn2O3 were the active sites of the catalyst capable of oxidizing toluene to CO and CO2 below 100 oC. Catalysts were deactivated at room temperature due to the accumulation of carbonaceous species on their surface. At least 65 oC was required for the stable operation of the catalysts. X-ray absorption spectroscopy was used to study the structure and electronic properties of the mono metallic and bimetallic catalysts. It was found that the catalysts with higher Mn loading resulted in higher oxidation states of Mn which were less favorable for the oxidation of toluene. The addition of Pt to the Mn containing catalyst increased the reaction rate by transferring electrons from Pt to Mn. On the other hand, no promotional effect was observed by the addition of Pd to Mn. The Oxidation state of Mn atoms was one of the most important parameters, controlling the rate of toluene oxidation. Lower oxidation states of Mn were able to easily transfer electrons to ozone, accelerating the rate of toluene oxidation. A reaction mechanism was proposed for the catalytic oxidation of toluene over manganese oxides. In this mechanism, the oxidation of toluene was carried out by the abstraction of hydrogen atoms followed by the oxidation of toluene carbon skeleton. A rate equation was derived based on this mechanism, determining the reaction orders of -1 and 2 for toluene and ozone, respectively. It was concluded that catalytic ozonation is an effective method for the low temperature oxidation of volatile organic compounds (VOCs) in air. The significance of this method is related to energy saving in air purifying systems by reducing the required temperature to oxidize VOCs. Catalytic ozonation can be used in indoor and outdoor applications for removal of VOCs from enclosed environments or polluted industrial streams

    Interactions between Lactobacillus crispatus and bacterial vaginosis (BV)-Associated bacterial species in initial attachment and biofilm formation

    Get PDF
    Certain anaerobic bacterial species tend to predominate the vaginal flora during bacterial vaginosis (BV), with Gardnerella vaginalis being the most common. However, the exact role of G. vaginalis in BV has not yet been determined. The main goal of this study was to test the hypothesis that G. vaginalis is an early colonizer, paving the way for intermediate (e.g., Fusobacterium nucleatum) and late colonizers (e.g., Prevotella bivia). Theoretically, in order to function as an early colonizer, species would need to be able to adhere to vaginal epithelium, even in the presence of vaginal lactobacilli. Therefore, we quantified adherence of G. vaginalis and other BV-associated bacteria to an inert surface pre-coated with Lactobacillus crispatus using a new Peptide Nucleic Acid (PNA) Fluorescence In Situ Hybridization (FISH) methodology. We found that G. vaginalis had the greatest capacity to adhere in the presence of L. crispatus. Theoretically, an early colonizer would contribute to the adherence and/or growth of additional species, so we next quantified the effect of G. vaginalis biofilms on the adherence and growth of other BV-associated species by quantitative Polymerase Chain Reaction (qPCR) technique. Interestingly, G. vaginalis derived a growth benefit from the addition of a second species, regardless of the species. Conversely, G. vaginalis biofilms enhanced the growth of P. bivia, and to a minor extent of F. nucleatum. These results contribute to our understanding of BV biofilm formation and the progression of the disorder.This work was supported by European Union funds (FEDER/COMPETE) and by national funds (FCT) under the project with reference FCOMP-01-0124-FEDER-008991 (PTDC/BIA-MIC/098228/2008) and in part by funds from the National Institutes of Health (P60-MD002256). AM acknowledges the FCT individual fellowship SFRH/BD/62375/2009

    Survival of Campylobacter Jejuni in Aquatic Milieus

    No full text
    This thesis is being archived as a Digitized Shelf Copy for campus access to current students and staff only. We currently cannot provide this open access without the author's permission. If you are the author of this work and desire to provide it open access or wish access removed please contact the Wahlstrom Library to discuss permission.Campylobacter jejuni has been isolated from a eutrophic pond and its occurrence in aquatic ecosystems may be attributed to prolonged survival. This study compared the relative survival of a clinical isolate and an environmental isolate of C. jejuni in aquatic milieus held at 4, 25, and 37 °C. Exposure of these isolates to aquatic stresses resulted in significant injuries as reflected by a dramatic drop of viable cell counts on standard selective media. Organisms in pond water kept at 25°C died within one day, whereas those in pond water sediment survived for up to 20 At 4 °C days, the organisms in sediment remained viable for up to 30 days. No viable organisms were detected after one day at 37°C. In seawater and sediment, however, the organisms did not survive at any of the measured temperatures for more than one day. C. jejuni survived longer when it was associated with algae or in the presence of metal ions such as magnesium, manganese, calcium, potassium, zinc and copper. The ability of C. jejuni to survive for longer times in sediment suggests that sediment may serve as a reservoir for this enteric pathogen
    corecore