143 research outputs found

    Machine Learning Predicts Reach-Scale Channel Types From Coarse-Scale Geospatial Data in a Large River Basin

    Get PDF
    Hydrologic and geomorphic classifications have gained traction in response to the increasing need for basin-wide water resources management. Regardless of the selected classification scheme, an open scientific challenge is how to extend information from limited field sites to classify tens of thousands to millions of channel reaches across a basin. To address this spatial scaling challenge, this study leverages machine learning to predict reach-scale geomorphic channel types using publicly available geospatial data. A bottom-up machine learning approach selects the most accurate and stable model among∼20,000 combinations of 287 coarse geospatial predictors, preprocessing methods, and algorithms in a three-tiered framework to (i) define a tractable problem and reduce predictor noise, (ii) assess model performance in statistical learning, and (iii) assess model performance in prediction. This study also addresses key issues related to the design, interpretation, and diagnosis of machine learning models in hydrologic sciences. In an application to the Sacramento River basin (California, USA), the developed framework selects a Random Forest model to predict 10 channel types previously determined from 290 field surveys over 108,943 two hundred-meter reaches. Performance in statistical learning is reasonable with a 61% median cross-validation accuracy, a sixfold increase over the 10% accuracy of the baseline random model, and the predictions coherently capture the large-scale geomorphic organization of the landscape. Interestingly, in the study area, the persistent roughness of the topography partially controls channel types and the variation in the entropy-based predictive performance is explained by imperfect training information and scale mismatch between labels and predictors

    Exploring the sensitivity of coastal inundation modelling to DEM vertical error

    Get PDF
    © 2018 Informa UK Limited, trading as Taylor & Francis Group. As sea level is projected to rise throughout the twenty-first century due to climate change, there is a need to ensure that sea level rise (SLR) models accurately and defensibly represent future flood inundation levels to allow for effective coastal zone management. Digital elevation models (DEMs) are integral to SLR modelling, but are subject to error, including in their vertical resolution. Error in DEMs leads to uncertainty in the output of SLR inundation models, which if not considered, may result in poor coastal management decisions. However, DEM error is not usually described in detail by DEM suppliers; commonly only the RMSE is reported. This research explores the impact of stated vertical error in delineating zones of inundation in two locations along the Devon, United Kingdom, coastline (Exe and Otter Estuaries). We explore the consequences of needing to make assumptions about the distribution of error in the absence of detailed error data using a 1 m, publically available composite DEM with a maximum RMSE of 0.15 m, typical of recent LiDAR-derived DEMs. We compare uncertainty using two methods (i) the NOAA inundation uncertainty mapping method which assumes a normal distribution of error and (ii) a hydrologically correct bathtub method where the DEM is uniformly perturbed between the upper and lower bounds of a 95% linear error in 500 Monte Carlo Simulations (HBM+MCS). The NOAA method produced a broader zone of uncertainty (an increase of 134.9% on the HBM+MCS method), which is particularly evident in the flatter topography of the upper estuaries. The HBM+MCS method generates a narrower band of uncertainty for these flatter areas, but very similar extents where shorelines are steeper. The differences in inundation extents produced by the methods relate to a number of underpinning assumptions, and particularly, how the stated RMSE is interpreted and used to represent error in a practical sense. Unlike the NOAA method, the HBM+MCS model is computationally intensive, depending on the areas under consideration and the number of iterations. We therefore used the HBM+ MCS method to derive a regression relationship between elevation and inundation probability for the Exe Estuary. We then apply this to the adjacent Otter Estuary and show that it can defensibly reproduce zones of inundation uncertainty, avoiding the computationally intensive step of the HBM+MCS. The equation-derived zone of uncertainty was 112.1% larger than the HBM+MCS method, compared to the NOAA method which produced an uncertain area 423.9% larger. Each approach has advantages and disadvantages and requires value judgements to be made. Their use underscores the need for transparency in assumptions and communications of outputs. We urge DEM publishers to move beyond provision of a generalised RMSE and provide more detailed estimates of spatial error and complete metadata, including locations of ground control points and associated land cover

    Database analysis of children and adolescents with Bipolar Disorder consuming a micronutrient formula

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eleven previous reports have shown potential benefit of a 36-ingredient micronutrient formula (known as EMPowerplus) for the treatment of psychiatric symptoms. The current study asked whether children (7-18 years) with pediatric bipolar disorder (PBD) benefited from this same micronutrient formula; the impact of Attention-Deficit/Hyperactivity Disorder (ADHD) on their response was also evaluated.</p> <p>Methods</p> <p>Data were available from an existing database for 120 children whose parents reported a diagnosis of PBD; 79% were taking psychiatric medications that are used to treat mood disorders; 24% were also reported as ADHD. Using Last Observation Carried Forward (LOCF), data were analyzed from 3 to 6 months of micronutrient use.</p> <p>Results</p> <p>At LOCF, mean symptom severity of bipolar symptoms was 46% lower than baseline (effect size (ES) = 0.78) (<it>p </it>< 0.001). In terms of responder status, 46% experienced >50% improvement at LOCF, with 38% still taking psychiatric medication (52% drop from baseline) but at much lower levels (74% reduction in number of medications being used from baseline). The results were similar for those with both ADHD and PBD: a 43% decline in PBD symptoms (ES = 0.72) and 40% in ADHD symptoms (ES = 0.62). An alternative sample of children with just ADHD symptoms (n = 41) showed a 47% reduction in symptoms from baseline to LOCF (ES = 1.04). The duration of reductions in symptom severity suggests that benefits were not attributable to placebo/expectancy effects. Similar findings were found for younger and older children and for both sexes.</p> <p>Conclusions</p> <p>The data are limited by the open label nature of the study, the lack of a control group, and the inherent self-selection bias. While these data cannot establish efficacy, the results are consistent with a growing body of research suggesting that micronutrients appear to have therapeutic benefit for children with PBD with or without ADHD in the absence of significant side effects and may allow for a reduction in psychiatric medications while improving symptoms. The consistent reporting of positive changes across multiple sites and countries are substantial enough to warrant a call for randomized clinical trials using micronutrients.</p

    Signs and symptoms of temporomandibular disorders and oral parafunctions in urban Saudi arabian adolescents: a research report

    Get PDF
    BACKGROUND: The aim of this study was to evaluate the prevalence of signs and symptoms of temporomandibular disorders (TMD) and oral parafunction habits among Saudi adolescents in the permanent dentition stage. METHODS: A total of 385 (230 females and 155 males) school children age 12–16, completed a questionnaire and were examined clinically. A stratified selection technique was used for schools allocation. RESULTS: The results showed that 21.3% of the subjects exhibited at least one sign of TMD and females were generally more affected than males. Joint sounds were the most prevalent sign (13.5%) followed by restricted opening (4.7%) and opening deviation (3.9%). The amplitude of mouth opening, overbite taken into consideration, was 46.5 mm and 50.2 mm in females and males respectively. TMJ pain and muscle tenderness were rare (0.5%). Reported symptoms were 33%, headache being the most frequent symptom 22%, followed by pain during chewing 14% and hearing TMJ noises 8.7%. Difficulty during jaw opening and jaw locking were rare. Lip/cheek biting was the most common parafunction habit (41%) with females significantly more than males, followed by nail biting (29%). Bruxism and thumb sucking were only 7.4% and 7.8% respectively. CONCLUSION: The prevalence of TMD signs were 21.3% with joint sounds being the most prevalent sign. While TMD symptoms were found to be 33% as, with headache being the most prevalent. Among the oral parafunctions, lip/cheek biting was the most prevalent 41% followed by nail biting 29%

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior
    corecore