1,324 research outputs found

    Light-Cone Quantization of the Liouville Model

    Full text link
    We present the quantization of the Liouville model defined in light-cone coordinates in (1,1) signature space. We take advantage of the representation of the Liouville field by the free field of the Backl\"{u}nd transformation and adapt the approch by Braaten, Curtright and Thorn. Quantum operators of the Liouville field ∂+ϕ\partial_{+}\phi, ∂−ϕ\partial_{-}\phi, egϕe^{g\phi}, e2gϕe^{2g\phi} are constructed consistently in terms of the free field. The Liouville model field theory space is found to be restricted to the sector with field momentum P+=−P−P_{+}=-P_{-}, P+>0P_{+}> 0 , which is a closed subspace for the Liouville theory operator algebra.Comment: 16 p, EFI-92-6

    Quantum Hamilton-Jacobi equation

    Get PDF
    The nontrivial transformation of the phase space path integral measure under certain discretized analogues of canonical transformations is computed. This Jacobian is used to derive a quantum analogue of the Hamilton-Jacobi equation for the generating function of a canonical transformation that maps any quantum system to a system with a vanishing Hamiltonian. A formal perturbative solution of the quantum Hamilton-Jacobi equation is given.Comment: 4 pages, RevTe

    Correlation functions in super Liouville theory

    Full text link
    We calculate three- and four-point functions in super Liouville theory coupled to super Coulomb gas on world sheets with spherical topology. We first integrate over the zero mode and assume that a parameter takes an integer value. After calculating the amplitudes, we formally continue the parameter to an arbitrary real number. Remarkably the result is completely parallel to the bosonic case, the amplitudes being of the same form as those of the bosonic case.Comment: 11 page

    Multi-Component KdV Hierarchy, V-Algebra and Non-Abelian Toda Theory

    Full text link
    I prove the recently conjectured relation between the 2×22\times 2-matrix differential operator L=∂2−UL=\partial^2-U, and a certain non-linear and non-local Poisson bracket algebra (VV-algebra), containing a Virasoro subalgebra, which appeared in the study of a non-abelian Toda field theory. Here, I show that this VV-algebra is precisely given by the second Gelfand-Dikii bracket associated with LL. The Miura transformation is given which relates the second to the first Gelfand-Dikii bracket. The two Gelfand-Dikii brackets are also obtained from the associated (integro-) differential equation satisfied by fermion bilinears. The asymptotic expansion of the resolvent of (L−ξ)Ψ=0(L-\xi)\Psi=0 is studied and its coefficients RlR_l yield an infinite sequence of hamiltonians with mutually vanishing Poisson brackets. I recall how this leads to a matrix KdV hierarchy which are flow equations for the three component fields T,V+,V−T, V^+, V^- of UU. For V±=0V^\pm=0 they reduce to the ordinary KdV hierarchy. The corresponding matrix mKdV equations are also given, as well as the relation to the pseudo- differential operator approach. Most of the results continue to hold if UU is a hermitian n×nn\times n-matrix. Conjectures are made about n×nn\times n-matrix mthm^{\rm th}-order differential operators LL and associated V(n,m)V_{(n,m)}-algebras.Comment: 20 pages, revised: several references to earlier papers on multi-component KdV equations are adde

    A Note on Background (In)dependence

    Full text link
    In general quantum systems there are two kinds of spacetime modes, those that fluctuate and those that do not. Fluctuating modes have normalizable wavefunctions. In the context of 2D gravity and ``non-critical'' string theory these are called macroscopic states. The theory is independent of the initial Euclidean background values of these modes. Non-fluctuating modes have non-normalizable wavefunctions and correspond to microscopic states. The theory depends on the background value of these non-fluctuating modes, at least to all orders in perturbation theory. They are superselection parameters and should not be minimized over. Such superselection parameters are well known in field theory. Examples in string theory include the couplings tkt_k (including the cosmological constant) in the matrix models and the mass of the two-dimensional Euclidean black hole. We use our analysis to argue for the finiteness of the string perturbation expansion around these backgrounds.Comment: 16 page

    Domain Walls in a FRW Universe

    Full text link
    We solve the equations of motion for a scalar field with domain wall boundary conditions in a Friedmann-Robertson-Walker (FRW) spacetime. We find (in agreement with Basu and Vilenkin) that no domain wall solutions exist in de Sitter spacetime for h = H/m >= 1/2, where H is the Hubble parameter and m is the scalar mass. In the general FRW case we develop a systematic perturbative expansion in h to arrive at an approximate solution to the field equations. We calculate the energy momentum tensor of the domain wall configuration, and show that the energy density can become negative at the core of the defect for some values of the non-minimal coupling parameter xi. We develop a translationally invariant theory for fluctuations of the wall, obtain the effective Lagrangian for these fluctuations, and quantize them using the Bunch-Davies vacuum in the de Sitter case. Unlike previous analyses, we find that the fluctuations act as zero-mass (as opposed to tachyonic) modes. This allows us to calculate the distortion and the normal-normal correlators for the surface. The normal-normal correlator decreases logarithmically with the distance between points for large times and distances, indicating that the interface becomes rougher than in Minkowski spacetime.Comment: 23 pages, LaTeX, 7 figures using epsf.tex. Now auto-generates P

    Toda Fields on Riemann Surfaces: remarks on the Miura transformation

    Full text link
    We point out that the Miura transformation is related to a holomorphic foliation in a relative flag manifold over a Riemann Surface. Certain differential operators corresponding to a free field description of WW--algebras are thus interpreted as partial connections associated to the foliation.Comment: AmsLatex 1.1, 10 page

    Soliton quantization and internal symmetry

    Full text link
    We apply the method of collective coordinate quantization to a model of solitons in two spacetime dimensions with a global U(1)U(1) symmetry. In particular we consider the dynamics of the charged states associated with rotational excitations of the soliton in the internal space and their interactions with the quanta of the background field (mesons). By solving a system of coupled saddle-point equations we effectively sum all tree-graphs contributing to the one-point Green's function of the meson field in the background of a rotating soliton. We find that the resulting one-point function evaluated between soliton states of definite U(1)U(1) charge exhibits a pole on the meson mass shell and we extract the corresponding S-matrix element for the decay of an excited state via the emission of a single meson using the standard LSZ reduction formula. This S-matrix element has a natural interpretation in terms of an effective Lagrangian for the charged soliton states with an explicit Yukawa coupling to the meson field. We calculate the leading-order semi-classical decay width of the excited soliton states discuss the consequences of these results for the hadronic decay of the Δ\Delta resonance in the Skyrme model.Comment: 23 pages, LA-UR-93-299

    Dynamical r-matrices and the chiral WZNW phase space

    Full text link
    The dynamical generalization of the classical Yang-Baxter equation that governs the possible Poisson structures on the space of chiral WZNW fields with generic monodromy is reviewed. It is explained that for particular choices of the chiral WZNW Poisson brackets this equation reduces to the CDYB equation recently studied by Etingof--Varchenko and others. Interesting dynamical r-matrices are obtained for generic monodromy as well as by imposing Dirac constraints on the monodromy.Comment: Talk given at XXIII International Colloquium on Group Theoretical Methods in Physics, July 31 - August 5, 2000, Dubna, Russia. LaTeX, 9 page
    • …
    corecore