728 research outputs found
Why growth equals power - and why it shouldn't : constructing visions of China
When discussing the success of China's transition from socialism, there is a tendency to focus on growth figures as an indication of performance. Whilst these figures are
indeed impressive, we should not confuse growth with development and assume that the former necessarily automatically generates the latter. Much has been done to
reduce poverty in China, but the task is not as complete as some observers would suggest; particularly in terms of access to health, education and welfare, and also in
dealing with relative (rather than absolute) depravation and poverty. Visions of China have been constructed that exaggerate Chinese development and power in the global
system partly to serve political interests, but partly due to the failure to consider the relationship between growth and development, partly due to the failure to disaggregate
who gets what in China, and partly due to the persistence of inter-national conceptions of globalised production, trade, and financial flows
Sustained nonoxidative glucose utilization and depletion of glycogen in reperfused canine myocardium
AbstractIschemically injured reperfused myocardium is characterized by increased 18F-fluorodeoxyglucose uptake as demonstrated by positron emission tomography. To elucidate the metabolic fate of exogenous glucose entering reperfused myocardium, D-[6-14C] glucose and L-[U-13C] lactate were used to determine glucose uptake, glucose oxidation and the contribution of exogenous glucose to lactate production. The pathologic model under investigation consisted of a 3 h balloon occlusion of the left anterior descending coronary artery followed by 24 h of reperfusion in canine myocardium. The extent and severity of myocardial injury after the ischemia and reperfusion were assessed by histochemical evaluation (triphenyltetrazolium chloride and periodic acid-Schiff stains). Thirteen intervention and four control dogs were studied.The glucose uptake in the occluded/reperfused area was significantly enhanced compared with that in control dogs (0.40 ± 0.14 versus 0.15 ± 0.10 μmol/ml, respectively). In addition, a significantly greater portion of the glucose extracted immediately entered glycolysis in the intervention group (75%) than in the control dogs (33%). The activity of the nonoxidative glycolytic pathway was markedly increased in the ischemically injured reperfused area, as evidenced by the four times greater lactate release in this area compared with the control value. The dual carbon-labeled isotopes showed that 57% of the exogenous glucose entering glycolysis was being converted to lactate. Exogenous glucose contributed to >90% of the observed lactate production. This finding was confirmed by the histochemical finding of sustained glycogen depletion in the occlusion/reperfusion area. The average area of glycogen depletion (37%) significantly exceeded the average area of necrosis (17%).These data demonstrate enhanced and sustained activity of the nonoxidative glycolytic pathway after a prolonged occlusion with reperfusion in canine myocardium. Because glycogen stores remain depleted, exogenous glucose becomes an important myocardial substrate under these pathologic conditions
A Novel Unsupervised Method to Identify Genes Important in the Anti-viral Response: Application to Interferon/Ribavirin in Hepatitis C Patients
Background: Treating hepatitis C with interferon/ribavirin results in a varied response in terms of decrease in viral titer and ultimate outcome. Marked responders have a sharp decline in viral titer within a few days of treatment initiation, whereas in other patients there is no effect on the virus (poor responders). Previous studies have shown that combination therapy modifies expression of hundreds of genes in vitro and in vivo. However, identifying which, if any, of these genes have a role in viral clearance remains challenging. Aims: The goal of this paper is to link viral levels with gene expression and thereby identify genes that may be responsible for early decrease in viral titer. Methods: Microarrays were performed on RNA isolated from PBMC of patients undergoing interferon/ribavirin therapy. Samples were collected at pre-treatment (day 0), and 1, 2, 7, 14 and 28 days after initiating treatment. A novel method was applied to identify genes that are linked to a decrease in viral titer during interferon/ribavirin treatment. The method uses the relationship between inter-patient gene expression based proximities and inter-patient viral titer based proximities to define the association between microarray gene expression measurements of each gene and viral-titer measurements. Results: We detected 36 unique genes whose expressions provide a clustering of patients that resembles viral titer based clustering of patients. These genes include IRF7, MX1, OASL and OAS2, viperin and many ISG's of unknown function. Conclusion: The genes identified by this method appear to play a major role in the reduction of hepatitis C virus during the early phase of treatment. The method has broad utility and can be used to analyze response to any group of factors influencing biological outcome such as antiviral drugs or anti-cancer agents where microarray data are available. © 2007 Brodsky et al
Identification of intracellular bacteria from multiple single-cell RNA-seq platforms using CSI-Microbes
The study of the tumor microbiome has been garnering increased attention. We developed a computational pipeline (CSI-Microbes) for identifying microbial reads from single-cell RNA sequencing (scRNA-seq) data and for analyzing differential abundance of taxa. Using a series of controlled experiments and analyses, we performed the first systematic evaluation of the efficacy of recovering microbial unique molecular identifiers by multiple scRNA-seq technologies, which identified the newer 10x chemistries (3' v3 and 5') as the best suited approach. We analyzed patient esophageal and colorectal carcinomas and found that reads from distinct genera tend to co-occur in the same host cells, testifying to possible intracellular polymicrobial interactions. Microbial reads are disproportionately abundant within myeloid cells that up-regulate proinflammatory cytokines like IL1Β and CXCL8, while infected tumor cells up-regulate antigen processing and presentation pathways. These results show that myeloid cells with bacteria engulfed are a major source of bacterial RNA within the tumor microenvironment (TME) and may inflame the TME and influence immunotherapy response
Gentle Masking of Low-Complexity Sequences Improves Homology Search
Detection of sequences that are homologous, i.e. descended from a common ancestor, is a fundamental task in computational biology. This task is confounded by low-complexity tracts (such as atatatatatat), which arise frequently and independently, causing strong similarities that are not homologies. There has been much research on identifying low-complexity tracts, but little research on how to treat them during homology search. We propose to find homologies by aligning sequences with “gentle” masking of low-complexity tracts. Gentle masking means that the match score involving a masked letter is , where is the unmasked score. Gentle masking slightly but noticeably improves the sensitivity of homology search (compared to “harsh” masking), without harming specificity. We show examples in three useful homology search problems: detection of NUMTs (nuclear copies of mitochondrial DNA), recruitment of metagenomic DNA reads to reference genomes, and pseudogene detection. Gentle masking is currently the best way to treat low-complexity tracts during homology search
Population genetic structure of Streptococcus pneumoniae in Kilifi, Kenya, prior to the introduction of pneumococcal conjugate vaccine.
BACKGROUND: The 10-valent pneumococcal conjugate vaccine (PCV10) was introduced in Kenya in 2011. Introduction of any PCV will perturb the existing pneumococcal population structure, thus the aim was to genotype pneumococci collected in Kilifi before PCV10. METHODS AND FINDINGS: Using multilocus sequence typing (MLST), we genotyped >1100 invasive and carriage pneumococci from children, the largest collection genotyped from a single resource-poor country and reported to date. Serotype 1 was the most common serotype causing invasive disease and was rarely detected in carriage; all serotype 1 isolates were members of clonal complex (CC) 217. There were temporal fluctuations in the major circulating sequence types (STs); and although 1-3 major serotype 1, 14 or 23F STs co-circulated annually, the two major serotype 5 STs mainly circulated independently. Major STs/CCs also included isolates of serotypes 3, 12F, 18C and 19A and each shared ≤ 2 MLST alleles with STs that circulate widely elsewhere. Major CCs associated with non-PCV10 serotypes were predominantly represented by carriage isolates, although serotype 19A and 12F CCs were largely invasive and a serotype 10A CC was equally represented by invasive and carriage isolates. CONCLUSIONS: Understanding the pre-PCV10 population genetic structure in Kilifi will allow for the detection of changes in prevalence of the circulating genotypes and evidence for capsular switching post-vaccine implementation
Effect of promoter architecture on the cell-to-cell variability in gene expression
According to recent experimental evidence, the architecture of a promoter,
defined as the number, strength and regulatory role of the operators that
control the promoter, plays a major role in determining the level of
cell-to-cell variability in gene expression. These quantitative experiments
call for a corresponding modeling effort that addresses the question of how
changes in promoter architecture affect noise in gene expression in a
systematic rather than case-by-case fashion. In this article, we make such a
systematic investigation, based on a simple microscopic model of gene
regulation that incorporates stochastic effects. In particular, we show how
operator strength and operator multiplicity affect this variability. We examine
different modes of transcription factor binding to complex promoters
(cooperative, independent, simultaneous) and how each of these affects the
level of variability in transcription product from cell-to-cell. We propose
that direct comparison between in vivo single-cell experiments and theoretical
predictions for the moments of the probability distribution of mRNA number per
cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte
- …