16 research outputs found

    An endogenous peptide marker differentiates SOD1 stability and facilitates pharmacodynamic monitoring in SOD1 amyotrophic lateral sclerosis

    Get PDF
    The discovery of novel biomarkers has emerged as a critical need for therapeutic development in amyotrophic lateral sclerosis (ALS). For some subsets of ALS, such as the genetic superoxide dismutase 1 (SOD1) form, exciting new treatment strategies, such as antisense oligonucleotide-mediated (ASO-mediated) SOD1 silencing, are being tested in clinical trials, so the identification of pharmacodynamic biomarkers for therapeutic monitoring is essential. We identify increased levels of a 7-amino acid endogenous peptide of SOD1 in cerebrospinal fluid (CSF) of human SOD1 mutation carriers but not in other neurological cases or nondiseased controls. Levels of peptide elevation vary based on the specific SOD1 mutation (ranging from 1.1-fold greater than control in D90A to nearly 30-fold greater in V148G) and correlate with previously published measurements of SOD1 stability. Using a mass spectrometry-based method (liquid chromatography-mass spectrometry), we quantified peptides in both extracellular samples (CSF) and intracellular samples (spinal cord from rat) to demonstrate that the peptide distinguishes mutation-specific differences in intracellular SOD1 degradation. Furthermore, 80% and 63% reductions of the peptide were measured in SOD1G93A and SOD1H46R rat CSF samples, respectively, following treatment with ASO, with an improved correlation to mRNA levels in spinal cords compared with the ELISA measuring intact SOD1 protein. These data demonstrate the potential of this peptide as a pharmacodynamic biomarker

    The cardiomyocyte disrupts pyrimidine biosynthesis in non-myocytes to regulate heart repair

    Get PDF
    Various populations of cells are recruited to the heart after cardiac injury, but little is known about whether cardiomyocytes directly regulate heart repair. Using a murine model of ischemic cardiac injury, we demonstrate that cardiomyocytes play a pivotal role in heart repair by regulating nucleotide metabolism and fates of nonmyocytes. Cardiac injury induced the expression of the ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which hydrolyzes extracellular ATP to form AMP. In response to AMP, cardiomyocytes released adenine and specific ribonucleosides that disrupted pyrimidine biosynthesis at the orotidine monophosphate (OMP) synthesis step and induced genotoxic stress and p53-mediated cell death of cycling nonmyocytes. As nonmyocytes are critical for heart repair, we showed that rescue of pyrimidine biosynthesis by administration of uridine or by genetic targeting of the ENPP1/AMP pathway enhanced repair after cardiac injury. We identified ENPP1 inhibitors using small molecule screening and showed that systemic administration of an ENPP1 inhibitor after heart injury rescued pyrimidine biosynthesis in nonmyocyte cells and augmented cardiac repair and postinfarct heart function. These observations demonstrate that the cardiac muscle cell regulates pyrimidine metabolism in nonmuscle cells by releasing adenine and specific nucleosides after heart injury and provide insight into how intercellular regulation of pyrimidine biosynthesis can be targeted and monitored for augmenting tissue repair

    Structural characterization of viral capsid maturation in bacteriophage HK97

    No full text
    Most complex viruses undergo a capsid maturation process from a precursor, or procapsid particle form to a more stable, infectious particle. dsDNA bacteriophage in particular, exhibit enormous conformational changes in their capsids, as hundreds of protein subunits must undergo a coordinated rearrangement that enables the particle to package and withstand high pressures of DNA. The reorganization in these phage often includes expansion of the capsid diameter, and significant thinning of the capsid shell, facilitated by subunit rotations. In vitro maturation experiments have shown that for many systems, the process can be mimicked without DNA packaging, instead using heat or perturbation agents to stimulate maturation, characterized as a highly exothermic event. Unlike most motor proteins such as ATP synthase, myosin, and many others, the process is uncoupled to hydrolysis of NTP's, instead using a trapped assembly intermediate as the driving force for the process. The structural mechanism for this behavior has been unknown for systems that undergo large-scale rearrangements such as dsDNA bacteriophage. We have been able to crystallize the pre- expanded particle form of bacteriophage HK97 at near atomic resolution and have been able to compare it to a previously solved structure of the mature HK97 capsid, enabling a first look at the structural mechanism associated with HK97 capsid maturation. The study has enabled us to identify the Prohead II state as an intermediate folded state that undergoes refolding and tertiary twisting motions to accommodate particle maturation, in contrast to the previously posited theories implicating rigid body movements as the method of transition. We have also used H/2H exchange coupled to MALDI mass spectrometry to follow the refolding transitions during expansion, as subunits hinge around newly identified 3-fold interactions that remain fixed throughout expansion, stabilizing inter-capsomer contacts and leveraging the transition. The study provides insight into a mechanism of expansion that consists of local high energy conformations maintained by quaternary interactions in the procapsid state, that when perturbed to expand, undergo an irreversible refolding transition that stabilizes the particl

    Deficiency of the sedoheptulose kinase (Shpk) does not alter the ability of hematopoietic stem cells to rescue cystinosis in the mouse model.

    No full text
    Cystinosis is an autosomal recessive lysosomal storage disorder caused by mutations in the CTNS gene encoding the lysosomal cystine transporter, cystinosin, and leading to multi-organ degeneration including kidney failure. A clinical trial for cystinosis is ongoing to test the safety and efficacy of transplantation of autologous hematopoietic stem and progenitor cells (HSPCs) ex vivo gene-modified to introduce functional CTNS cDNA. Preclinical studies in Ctns-/- mice previously showed that a single HSPC transplantation led to significant tissue cystine decrease and long-term tissue preservation. The main mechanism of action involves the differentiation of the transplanted HSPCs into macrophages within tissues and transfer of cystinosin-bearing lysosomes to the diseased cells via tunneling nanotubes. However, a major concern was that the most common cystinosis-causing mutation in humans is a 57-kb deletion that eliminates not only CTNS but also the adjacent sedopheptulose kinase SHPK/CARKL gene encoding a metabolic enzyme that influences macrophage polarization. Here, we investigated if absence of Shpk could negatively impact the efficiency of transplanted HSPCs to differentiate into macrophages within tissues and then to prevent cystinosis rescue. We generated Shpk knockout mouse models and detected a phenotype consisting of perturbations in the pentose phosphate pathway (PPP), the metabolic shunt regulated by SHPK. Shpk-/- mice also recapitulated the urinary excretion of sedoheptulose and erythritol found in cystinosis patients homozygous for the 57-kb deletion. Transplantation of Shpk-/--HSPCs into Ctns-/- mice resulted in significant reduction in tissue cystine load and restoration of Ctns expression, as well as improved kidney architecture comparable to WT-HSPC recipients. Altogether, these data demonstrate that absence of SHPK does not alter the ability of HSPCs to rescue cystinosis, and then patients homozygous for the 57-kb deletion should benefit from ex vivo gene therapy and can be enrolled in the ongoing clinical trial. However, because of the limits inherent to animal models, outcomes of this patient population will be carefully compared to the other enrolled subjects
    corecore