19 research outputs found

    Ionophoric and aptameric recognition-modulated electroactive polyaniline films for the determination of tetrodotoxin

    Get PDF
    Philosophiae Doctor - PhDTetrodotoxin (TTX) is a nonpeptidic neurotoxin with a high rate of food poisoning mortality (60%) that has been associated with the consumption of diets from puffer fish and mud snails harbouring TTX-producing bacteria. As this neurotoxin has no known antidote and could not be mitigated by cooking, the only way for safety appears to be the detection of TTX-contaminated fishes at the points of harvest and control. The overall aim of this study was to develop amperometric and impedimetric sensors for TTX based on ionophores and aptamer immobilised on the modified conducting electroactive polyaniline (PANI)/electrode. The undoped polyaniline and poly(4-styrenesulfonic acid) (PSSA) doped electroactive polyanilines were prepared in perchloric acid/acetonitrile and phosphoric acid respectively by electrochemical oxidative polymerisation. Two types of electropolymerisation were applied to prepare the neutral and p-doped PANI−PSSA films composites. The dynamic electroinactivity of TTX was studied which revealed that TTX is not electrochemically active on bare Au, GC, Pt, PG, Ni, Ti and BDD (Boron dopeddiamond) electrodes in acetate buffer pH 4.8. Using ion transfer voltammetry and UV-Vis analysis, the complexation of TTX with two neutral ionophores (sodium ionophore X (NaX) and dibenzo-18-crown6 (B18C6)) was investigated. The cyclic voltammograms (CVs) recorded from ion transfer voltammetry presented no redox peak and no increasing/decreasing current was observed which indicates that no TTX ions transfer from the liquid to the organic phase. In addition, the absorption spectra of the mixture of TTX/NaX and TTX/B18C6 presented the same absorption bands recorded for NaX and B18C6 respectively. Three absorptions bands at 250.4, 278.3, and 370.6 nm for NaX and two at 222.03 and 274.10 nm for B18C6 were observed before and after mixing TTX with NaX and TTX with B18C6 separately. No chemical reaction occurred between the TTX and both ionophores, therefore, sodium ionophore X and dibenzo-18-crown-6 did not form a complex with TTX. Thus, TTX ion sensor cannot be developed based on these two neutral compounds. The electrodynamics of the PANI and PANI−PSSA films electropolymerised on the bare precious metal electrodes were also investigated through various electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies in sodium phosphate (SPB) and acetate (OAc) buffer revealed that both neutral and p-doped films synthesized were thin (thickness L < 5 nm in acetate buffer and L < 10 nm in sodium phosphate buffer) film polymers

    Low symmetric metallophthalocyanine modified electrode via click chemistry for simultaneous detection of heavy metals

    Get PDF
    Beside different methods and materials used to develop electrochemical sensors, the modification of the electrode using click reaction based on metallophthalocyanine (MPc) compounds are shown to improve the stability and sensitivity of the sensor. This work reported the development of electrochemical sensor for mercury (II), Lead (II), copper (II) and cadmium (II) ions detection based on the synthesized novel low symmetry alkyne terminated cobalt Phthalocyanine (CoPc) derivative. Differential pulse stripping voltammetry (DPSV) technique was employed for the first time in simultaneous determination of trace levels of the above metal ions using modified glassy carbon electrode (GCE) via click chemistry. Under the optimum experimental conditions, the anodic peak current is proportional to the concentrations of metal ions over a wide range of 0 to 0.1 mM with nanolevel detection limit of 81.94, 327.71, 55.87 and 347.06 nM and the sensitivity of 866.23 ± 5.48, 215.82 ± 2.16, 1979.48 ± 11.47 and 204.50 ± 1.10 μA/mM for Hg(II), Cu(II), Pb(II) and Cd(II), respectively. The selectivity of the clicked-CoPc modified GCE toward Hg(II), Cu(II), Pb(II), Cd(II) present no interference from these metals ions. The fabricated electrochemical sensor exhibited very good electrochemical properties such as good reproducibility, stability, reusability and is suitable for the detection of heavy metal ions in tap water in our laboratory

    Click chemistry electrode modification using 4-ethynylbenzyl substituted cobalt phthalocyanine for applications in electrocatalysis

    Get PDF
    In this work, we report on the synthesis and applications of a new cobalt tetrakis 4-((4-ethynylbenzyl) oxy) phthalocyanine (3) for the detection of hydrazine. The glassy carbon electrode (GCE) was first grafted through diazotization, providing the GCE surface layer with azide groups. Thereafter, the 1,3-dipolar cycloaddition reaction, catalyzed by a copper(I) catalyst was used to “click” complex 3 to the grafted surface of GCE. The new platform was then characterized using cyclic voltammetry (CV), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). This work shows that 3 is an effective sensor with sensitivity of 91.5 μA mM−1 and limit of detection of 3.28 μM which is a great improvement compared to other reported sensors for this analyte

    Electrode modification using alkyne manganese phthalocyanine and click chemistry for electrocatalysis

    Get PDF
    In this work, azidobenzene diazonium salt is grafted onto a glassy carbon electrode (GCE) followed by clicking of manganese tetrahexynyl phthalocyanine for the electrocatalysis of hydrazine. The GCE was first grafted via the in situ diazotization of a diazonium salt, rendering the GCE surface layered with azide groups. From this point, the 1,3-dipolar cycloaddition reaction, catalyzed by a copper catalyst was utilized to ‘click’ the manganese tetrahexynyl phthalocyanine to the surface of the grafted GCE. This new platform was then characterized using cyclic voltammetry (CV), scanning electrochemical microscopy (SECM) and X-ray photoelectron spectroscopy (XPS). Based on the cyclic voltammetry calibration curve of electrocatalysis for hydrazine, the clicked Mn phthalocyanine electrode proved to be an effective sensor with a sensitivity of 27.38 µA mM−1 and the limit of detection (LoD) of 15.4 pM which is a great improvement compared to other reported sensors for this analyte

    Photophysical studies of 2, 6-dibrominated BODIPY dyes substituted with 4-benzyloxystyryl substituents

    Get PDF
    A series of novel 2,6-dibrominated BODIPY dyes with styryl groups at the 3,5-positions has been prepared, and their photophysical properties have been analyzed to assess their potential utility for use as photosensitizers in photodynamic therapy and in bioimaging

    A2B type copper (III) corroles containing zero-to-five fluorine atoms

    Get PDF
    Four low symmetric A2B meso-substituted Cu(III)corroles with electron withdrawing meso-aryl rings have been synthesized and characterized. A detailed analysis of the optical and redox properties has been carried out by comparing their optical spectroscopy, electrochemistry and spectroelectrochemistry to a series of DFT and TD-DFT calculations. A series of experiments demonstrate that these Cu(III)corroles can be used as highly effective catalysts for hydrogen evolution reactions (HERs). Moreover, when the number of fluorine atoms at B meso-position is increased, there is a marked enhancement in the catalytic ability of the corrole complexes, which demonstrates that modification to the structures of low symmetry corroles is a useful strategy for developing new HER catalysts

    Halogen substituted A2B type Co (III) triarylcorroles

    Get PDF
    Seven low symmetry A2B type Co(III)triarylcorroles with electron withdrawing meso-aryl substituents have been synthesized and characterized. A detailed analysis of the optical and redox properties has been carried out by comparing their optical spectroscopy, electrochemistry and spectroelectrochemistry to trends predicted in a series of DFT and TD-DFT calculations. The results demonstrate that Co(III)corroles are highly effective catalysts for hydrogen evolution reactions (HERs). Moreover, there is a marked enhancement in their homogenous catalytic ability when halogen atoms are introduced at the B position, which demonstrates that facile modifying the meso-aryl rings is a effective strategy for developing new HER catalysts. The electrochemical results demonstrate that an unusual two step modulation of HER reactions can be achieved by using singly and doubly electrochemical reduced cobalt triarylcorroles anions

    Optimizing phthalocyanine based dye-sensitized solar cells: The role of reduced graphene oxide

    Get PDF
    Dye-sensitized solar cells (DSSC) were fabricated by incorporating graphene materials as catalysts at the counter electrode. Platinum was also used as a catalyst for comparison purposes. Different phthalocyanines: hydroxyl indium tetracarboxyphenoxy phthalocyanine (1), chloro indium octacarboxy phthalocyanine (2) and dibenzoic acid silicon phthalocyanine (3) were used as dyes. Complex 3 gave the highest power conversion efficiency (η) of 3.19% when using nitrogen doped reduced graphene oxide nanosheets (NrGONS) as a catalyst at the counter electrode, and TiO2 containing rGONS at the anode. The value is close to 3.8% obtained when using Pt catalyst instead of NrGONS at the cathode, thus confirming that NrGONS is a promising candidate to replace the more expensive Pt. The study also shows that placing rGONS on both the anode and cathode improves efficiency

    Aptameric Recognition-Modulated Electroactivity of Poly(4-Styrenesolfonic Acid)-Doped Polyaniline Films for Single-Shot Detection of Tetrodotoxin

    No full text
    The work being reported is the first electrochemical sensor for tetrodotoxin (TTX). It was developed on a glassy carbon electrodes (C) that was modified with poly(4-styrenesolfonic acid)-doped polyaniline film (PANI/PSSA). An amine-end functionalized TTX-binding aptamer, 5′-NH2-AAAAATTTCACACGGGTGCCTCGGCTGTCC-3′ (NH2-Apt), was grafted via covalent glutaraldehyde (glu) cross-linking. The resulting aptasensor (C//PANI+/PSSA-glu-NH2-Apt) was interrogated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in sodium acetate buffer (NaOAc, pH 4.8) before and after 30 min incubation in standard TTX solutions. Both CV and EIS results confirmed that the binding of the analyte to the immobilized aptamer modulated the electrochemical properties of the sensor: particularly the charge transfer resistance (Rct) of the PANI+/PSSA film, which served as a signal reporter. Based on the Rct calibration curve of the TTX aptasensor, the values of the dynamic linear range (DLR), sensitivity and limit of detection (LOD) of the sensor were determined to be 0.23–1.07 ng·mL−1 TTX, 134.88 ± 11.42 Ω·ng·mL−1 and 0.199 ng·mL−1, respectively. Further studies are being planned to improve the DLR as well as to evaluate selectivity and matrix effects in real samples

    One-pot synthesis of graphene quantum dots–phthalocyanines supramolecular hybrid and the investigation of their photophysical properties

    Get PDF
    The synthesis of graphene quantum dots (GQDs) using organic compounds as carbon sources via bottom-up approaches has been widely developed, whereas their hybrids with other materials have been previously achieved post-synthetically via multi-step procedures. A novel approach for the preparation of supramolecular hybrid conjugates of GQDs and phthalocyanines (Pcs) via an in situ one-step bottom-up route was employed in this study. The as-synthesized GQDs and their Pc conjugates were characterized using different spectroscopic techniques and their photophysicochemical properties evaluated. Notably, the singlet oxygen quantum yields of the Pcs in the presence of GQDs were found to be 0.51 and 0.74 for 1-GQDs and 2-GQDs, respectively, as compared to the Pcs alone (0.18 and 0.70 for complex 1 and 2, respectively). The increase in triplet quantum yield (ΦT) values is complemented by a decrease in fluorescence quantum yield (ΦF). ΦT value of 0.96 obtained for the complex 2 after conjugation with GQDs is better or higher than the value of 0.74 as reported in the literature when complex 2 was conjugated to semiconductor QDs. Hence, this novel approach resulted in the derivation of hybrid materials with potentials for various photophysicochemical applications such as photodynamic therapy and photocatalysis
    corecore