7 research outputs found

    SARS-CoV-2 N501Y Introductions and Transmissions in Switzerland from Beginning of October 2020 to February 2021—Implementation of Swiss-Wide Diagnostic Screening and Whole Genome Sequencing

    Full text link
    The rapid spread of the SARS-CoV-2 lineages B.1.1.7 (N501Y.V1) throughout the UK, B.1.351 (N501Y.V2) in South Africa, and P.1 (B.1.1.28.1; N501Y.V3) in Brazil has led to the definition of variants of concern (VoCs) and recommendations for lineage specific surveillance. In Switzerland, during the last weeks of December 2020, we established a nationwide screening protocol across multiple laboratories, focusing first on epidemiological and microbiological definitions. In January 2021, we validated and implemented an N501Y-specific PCR to rapidly screen for VoCs, which are then confirmed using amplicon sequencing or whole genome sequencing (WGS). A total of 13,387 VoCs have been identified since the detection of the first Swiss case in October 2020, with 4194 being B.1.1.7, 172 B.1.351, and 7 P.1. The remaining 9014 cases of VoCs have been described without further lineage specification. Overall, all diagnostic centers reported a rapid increase of the percentage of detected VOCs, with a range of 6 to 46% between 25 to 31 of January 2021 increasing towards 41 to 82% between 22 to 28 of February. A total of 739 N501Y positive genomes were analysed and show a broad range of introduction events to Switzerland. In this paper, we describe the nationwide coordination and implementation process across laboratories, public health institutions, and researchers, the first results of our N501Y-specific variant screening, and the phylogenetic analysis of all available WGS data in Switzerland, that together identified the early introduction events and subsequent community spreading of the VoCs

    External quality assessment of SARS-CoV-2-sequencing: An ESGMD-SSM pilot trial across 15 European laboratories

    Get PDF
    Objective: This first pilot on external quality assessment (EQA) of SARS-CoV-2 whole genome sequencing, initiated by the ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD) and Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing.Methods: Ten samples with varying viral loads were sent out to 15 clinical laboratories who had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centres were compared on were identification of 1) SNPs and indels, 2) Pango lineages, and 3) clusters between samples.Results: The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to varying depth (up to 100-fold difference across centres). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignment. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data.Conclusions: The pilot EQA was an overall success. It was able to show the high quality of participating labs and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.</p

    How much should we sequence? An analysis of the Swiss SARS-CoV-2 surveillance effort.

    Get PDF
    During the SARS-CoV-2 pandemic, many countries directed substantial resources toward genomic surveillance to detect and track viral variants. There is a debate over how much sequencing effort is necessary in national surveillance programs for SARS-CoV-2 and future pandemic threats. We aimed to investigate the effect of reduced sequencing on surveillance outcomes in a large genomic data set from Switzerland, comprising more than 143k sequences. We employed a uniform downsampling strategy using 100 iterations each to investigate the effects of fewer available sequences on the surveillance outcomes: (i) first detection of variants of concern (VOCs), (ii) speed of introduction of VOCs, (iii) diversity of lineages, (iv) first cluster detection of VOCs, (v) density of active clusters, and (vi) geographic spread of clusters. The impact of downsampling on VOC detection is disparate for the three VOC lineages, but many outcomes including introduction and cluster detection could be recapitulated even with only 35% of the original sequencing effort. The effect on the observed speed of introduction and first detection of clusters was more sensitive to reduced sequencing effort for some VOCs, in particular Omicron and Delta, respectively. A genomic surveillance program needs a balance between societal benefits and costs. While the overall national dynamics of the pandemic could be recapitulated by a reduced sequencing effort, the effect is strongly lineage-dependent-something that is unknown at the time of sequencing-and comes at the cost of accuracy, in particular for tracking the emergence of potential VOCs.IMPORTANCESwitzerland had one of the most comprehensive genomic surveillance systems during the COVID-19 pandemic. Such programs need to strike a balance between societal benefits and program costs. Our study aims to answer the question: How would surveillance outcomes have changed had we sequenced less? We find that some outcomes but also certain viral lineages are more affected than others by sequencing less. However, sequencing to around a third of the original effort still captured many important outcomes for the variants of concern such as their first detection but affected more strongly other measures like the detection of first transmission clusters for some lineages. Our work highlights the importance of setting predefined targets for a national genomic surveillance program based on which sequencing effort should be determined. Additionally, the use of a centralized surveillance platform facilitates aggregating data on a national level for rapid public health responses as well as post-analyses

    SARS-CoV-2 N501Y Introductions and Transmissions in Switzerland from Beginning of October 2020 to February 2021—Implementation of Swiss-Wide Diagnostic Screening and Whole Genome Sequencing

    No full text
    The rapid spread of the SARS-CoV-2 lineages B.1.1.7 (N501Y.V1) throughout the UK, B.1.351 (N501Y.V2) in South Africa, and P.1 (B.1.1.28.1; N501Y.V3) in Brazil has led to the definition of variants of concern (VoCs) and recommendations for lineage specific surveillance. In Switzerland, during the last weeks of December 2020, we established a nationwide screening protocol across multiple laboratories, focusing first on epidemiological and microbiological definitions. In January 2021, we validated and implemented an N501Y-specific PCR to rapidly screen for VoCs, which are then confirmed using amplicon sequencing or whole genome sequencing (WGS). A total of 13,387 VoCs have been identified since the detection of the first Swiss case in October 2020, with 4194 being B.1.1.7, 172 B.1.351, and 7 P.1. The remaining 9014 cases of VoCs have been described without further lineage specification. Overall, all diagnostic centers reported a rapid increase of the percentage of detected VOCs, with a range of 6 to 46% between 25 to 31 of January 2021 increasing towards 41 to 82% between 22 to 28 of February. A total of 739 N501Y positive genomes were analysed and show a broad range of introduction events to Switzerland. In this paper, we describe the nationwide coordination and implementation process across laboratories, public health institutions, and researchers, the first results of our N501Y-specific variant screening, and the phylogenetic analysis of all available WGS data in Switzerland, that together identified the early introduction events and subsequent community spreading of the VoCs

    External quality assessment of SARS-CoV-2-sequencing: An ESGMD-SSM pilot trial across 15 European laboratories.

    Get PDF
    OBJECTIVE This first pilot on external quality assessment (EQA) of SARS-CoV-2 whole genome sequencing, initiated by the ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD) and Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. METHODS Ten samples with varying viral loads were sent out to 15 clinical laboratories who had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centres were compared on were identification of 1) SNPs and indels, 2) Pango lineages, and 3) clusters between samples. RESULTS The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to varying depth (up to 100-fold difference across centres). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignment. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. CONCLUSIONS The pilot EQA was an overall success. It was able to show the high quality of participating labs and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment

    How much should we sequence? An analysis of the Swiss SARS-CoV-2 surveillance effort

    No full text
    Background During the SARS-CoV-2 pandemic, many countries directed substantial resources towards genomic surveillance to detect and track viral variants. There is a debate over how much sequencing effort is necessary in national surveillance programs for SARS-CoV-2 and future pandemic threats. Aim We aimed to investigate the effect of reduced sequencing on surveillance outcomes in a large genomic dataset from Switzerland, comprising more than 143k sequences. Methods We employed a uniform downsampling strategy using 100 iterations each to investigate the effects of fewer available sequences on the surveillance outcomes: (i) first detection of variants of concern (VOCs), (ii) speed of introduction of VOCs, (iii) diversity of lineages, (iv) first cluster detection of VOCs, (v) density of active clusters, and (vi) geographic spread of clusters. Results The impact of downsampling on VOC detection is disparate for the three VOC lineages, but many outcomes including introduction and cluster detection could be recapitulated even with only 35% of the original sequencing effort. The effect on the observed speed of introduction and first detection of clusters was more sensitive to reduced sequencing effort for some VOCs, in particular Omicron and Delta, respectively. Conclusion A genomic surveillance program needs a balance between societal benefits and costs. While the overall national dynamics of the pandemic could be recapitulated by a reduced sequencing effort, the effect is strongly lineage dependent – something that is unknown at the time of sequencing – and comes at the cost of accuracy, in particular for tracking the emergence of potential VOCs
    corecore