14 research outputs found
Determination of the trap-assisted recombination strength in polymer light emitting diodes
The recombination processes in poly(p-phenylene vinylene) based polymer light-emitting diodes (PLEDs) are investigated. Photogenerated current measurements on PLED device structures reveal that next to the known Langevin recombination also trap-assisted recombination is an important recombination channel in PLEDs, which has not been considered until now. The dependence of the open-circuit voltage on light intensity enables us to determine the strength of this process. Numerical modeling of the current-voltage characteristics incorporating both Langevin and trap-assisted recombination yields a correct and consistent description of the PLED, without the traditional correction of the Langevin prefactor. At low bias voltage the trap-assisted recombination rate is found to be dominant over the free carrier recombination rate.
Hole-transport comparison between solution-processed and vacuum-deposited organic semiconductors
Charge transport in the amorphous organic small molecules α-NPD (N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine) and Spiro-TAD (2,2′,7,7′-tetrakis(N,N-diphenylamino)-9,9-spirobifluorene) is investigated in solution-processed films and compared to charge transport in vacuum-deposited films of the same molecule. By optimizing the solution-deposition conditions, such as solvent and concentration, equal charge-transport parameters for solution-processed and vacuum-deposited films are demonstrated. Modeling of the charge carrier transport characteristics was performed by drift-diffusion simulations. The dependence of the charge carrier mobility on temperature, carrier density, and electric field was found to be the same for vacuum deposition and solution processing. In both material processing cases, hole mobilities of 4 × 10−8 m2 V−1 s−1 for spiro-TAD and 0.9 × 10−8 m2 V−1 s−1 for α-NPD are obtained, demonstrating that solution processing can be a viable alternative to vacuum deposition in terms of charge transport
Asymmetric electron and hole transport in a high-mobility n-type conjugated polymer
Electron- and hole-transport properties of the n-type copolymer poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-dithiophene)} [P(NDI2OD-T2), PolyeraActivInkTM N2200] are investigated. Electron- and hole-only devices with Ohmic contacts are demonstrated, exhibiting trap-free space-charge-limited currents for both types of charge carriers. While hole and electron mobilities are frequently equal in organic semiconductors, room-temperature mobilities of 5 × 10−8 m2/Vs for electrons and 3.4 × 10−10 m2/Vs for holes are determined, both showing universal Arrhenius temperature scaling. The origin of the large difference between electron and hole mobility is explained by quantum-chemical calculations, which reveal that the internal reorganization energy for electrons is smaller than for holes, while the transfer integral is larger. As a result, electron transport is intrinsically superior to hole transport under the same injection and extraction conditions.