36 research outputs found

    Standard Model Neutrinos as Warm Dark Matter

    Get PDF
    Standard Model neutrinos are not usually considered plausible dark matter candidates because the usual treatment of their decoupling in the early universe implies that their mass must be sufficiently small to make them ``hot'' dark matter. In this paper we show that decoupling of Standard Model neutrinos in low reheat models may result in neutrino densities very much less than usually assumed, and thus their mass may be in the keV range. Standard Model neutrinos may therefore be warm dark matter candidates.Comment: 5 pages, 5 figures, LaTeX file uses revtex packag

    New Upper Limits on the Tau Neutrino Mass from Primordial Helium Considerations

    Full text link
    In this paper we reconsider recently derived bounds on MeVMeV tau neutrinos, taking into account previously unaccounted for effects. We find that, assuming that the neutrino life-time is longer than O(100 sec)O(100~sec), the constraint Neff<3.6N_{eff}<3.6 rules out ντ\nu_{\tau} masses in the range 0.5 (MeV)<mντ<35 (MeV)0.5~(MeV)<m_{\nu_\tau}<35~(MeV) for Majorana neutrinos and 0.74 (MeV)<mντ<35 (MeV)0.74~(MeV)<m_{\nu_\tau}<35~(MeV) for Dirac neutrinos. Given that the present laboratory bound is 35 MeV, our results lower the present bound to 0.50.5 and 0.740.74 for Majorana and Dirac neutrinos respectively.Comment: 9 pages (2 figures available upon request), UM-AC-93-0

    Cosmological Implications of Neutrinos

    Get PDF
    The lectures describe several cosmological effects produced by neutrinos. Upper and lower cosmological limits on neutrino mass are derived. The role that neutrinos may play in formation of large scale structure of the universe is described and neutrino mass limits are presented. Effects of neutrinos on cosmological background radiation and on big bang nucleosynthesis are discussed. Limits on the number of neutrino flavors and mass/mixing are given.Comment: 41 page, 7 figures; lectures presented at ITEP Winter School, February, 2002; to be published in the Proceeding

    Bounds on Dirac Neutrino Masses from Nucleosynthesis

    Full text link
    We derive new bounds on the Dirac mass of the tau and muonic neutrinos. By solving the kinetic equation for the rate of energy deposition due to helicity flipping processes and imposing the constraint that the number of effective species contributing to the energy density at the time of nucleosynthesis be Δkν< 0.3\Delta k_\nu<~0.3, we find the bounds mνμ< 150m_{\nu_\mu} < ~150 KeV and mντ< 190m_{\nu_\tau} < ~190 KeV for TQCD=200T_{\rm QCD}= 200 MeV. The constraint Δkν <0.1 \Delta k_\nu~<0.1~ leads to the much stronger bound mν<10m_\nu <10 KeV for both species of neutrinos.Comment: 10 pages, UM-TH-94-21, UMN-TH-1303-94, FERMILAB-Pub-94/199-

    Scattering theory and ground-state energy of Dirac fermions in graphene with two Coulomb impurities

    Get PDF
    We study the physics of Dirac fermions in a gapped graphene monolayer containing two Coulomb impurities. For the case of equal impurity charges, we discuss the ground-state energy using the linear combination of atomic orbitals (LCAO) approach. For opposite charges of the Coulomb centers, an electric dipole potential results at large distances. We provide a nonperturbative analysis of the corresponding low-energy scattering problem
    corecore