6,790 research outputs found

    Zeno and anti-Zeno polarization control of spin-ensembles by induced dephasing

    Full text link
    We experimentally and theoretically demonstrate the purity (polarization) control of qubits entangled with multiple spins, using induced dephasing in nuclear magnetic resonance (NMR) setups to simulate repeated quantum measurements. We show that one may steer the qubit ensemble towards a quasi-equilibrium state of certain purity, by choosing suitable time intervals between dephasing operations. These results demonstrate that repeated dephasing at intervals associated with the anti-Zeno regime lead to ensemble purification, whereas those associated with the Zeno regime lead to ensemble mixing.Comment: Main Text: 5 pages, 2 figures. Sup. Inf.: 5pages, 1 figur

    Scalable solid-state quantum processor using subradiant two-atom states

    Full text link
    We propose a realization of a scalable, high-performance quantum processor whose qubits are represented by the ground and subradiant states of effective dimers formed by pairs of two-level systems coupled by resonant dipole-dipole interaction. The dimers are implanted in low-temperature solid host material at controllable nanoscale separations. The two-qubit entanglement either relies on the coherent excitation exchange between the dimers or is mediated by external laser fields.Comment: 4 pages, 3 figure

    A model-independent Dalitz plot analysis of B±→DK± with D→K0Sh+h− (h=π,K) decays and constraints on the CKM angle γ

    Get PDF
    A binned Dalitz plot analysis of B ±→DK ± decays, with D→KS0π+π- and D→KS0K+K-, is performed to measure the CP-violating observables x ± and y ± which are sensitive to the CKM angle γ. The analysis exploits 1.0 fb -1 of data collected by the LHCb experiment. The study makes no model-based assumption on the variation of the strong phase of the D decay amplitude over the Dalitz plot, but uses measurements of this quantity from CLEO-c as input. The values of the parameters are found to be x -=(0.0±4.3±1.5±0.6)×10 -2, y -=(2.7±5.2±0.8±2.3)×10 -2, x +=(-10.3±4.5±1.8±1.4)×10 -2 and y +=(-0.9±3.7±0.8±3.0)×10 -2. The first, second, and third uncertainties are the statistical, the experimental systematic, and the error associated with the precision of the strong-phase parameters measured at CLEO-c, respectively. These results correspond to γ=(44-38+43)°, with a second solution at γ→γ+180°, and r B=0.07±0.04, where r B is the ratio between the suppressed and favoured B decay amplitudes

    Comparison of walking performance over the first 2 minutes and the full 6 minutes of the Six-Minute Walk Test

    Get PDF
    BackgroundAlthough the Six-Minute Walk Test (6MWT), as recommended by the American Thoracic Society, is widely used as a measure of functional endurance, it may not be applicable in some settings and populations. We sought to examine, therefore, performance over the first 2 minutes and the full 6 minutes of the 6MWT. Specifically, we investigated completion rates, distances walked, test-retest reliability, and the relationship between distances walked over the first 2 and the full 6 minutes of the 6MWT.MethodsCommunity-dwelling children and adults age 3-85 years (n = 337) were asked to walk back and forth on a 15.24 meter (50 ft) course as far as possible without running over a 6 minute period. Test completion and the distance covered by the participants at 2 and 6 minutes were documented. The reliability of distances covered at 2 and 6 minutes was determined by retesting a subsample of 54 participants 6 to 10 days later. The relationship between distances covered at 2 and 6 minutes was determined for the 330 participants completing the 6MWT.ResultsAll 337 participants completed at least 2 minutes of walking, but 7 children less than 5 years of age ceased walking before 6 minutes had elapsed. For the remaining 330 participants the mean distance walked was 186 meters at 2 minutes and 543 meters at 6 minutes. The distances covered at 2 and 6 minutes were reliable between sessions (intraclass correlation coefficients = 0.888 and 0.917, respectively). The distances covered over 2 and 6 minutes were highly correlated (r = 0.968).ConclusionsThe completion rate, values obtained, test-retest reliability, and relationship of the distances walked in 2 and 6 minutes support documentation of 2 minute distance during the 6MWT. The findings also provide support for use of a Two-Minute Walk Test as the endurance component in the Motor Battery of the NIH Toolbox

    Observation of the suppressed ADS modes B± → [π±K-/+ π+π-]D K± and B± → [π± K-/+π+π-]Dπ±

    Get PDF
    An analysis of and B± → DK± and B± → Dπ± decays is presented where the D meson is reconstructed in the four-body final state K± π-/+π+π-. Using LHCb data corresponding to an integrated luminosity of 1.0 fb-1, first observations are made of the suppressed ADS modes B± →[π± K-/+π+π-]DK± and B± → [π± K-/+π+π-]Dπ± with a significance of 5.1 sigma and greater than 10 sigma, respectively. Measurements of CP asymmetries and CP-conserving ratios of partial widths from this family of decays are also performed. The magnitude of the ratio between the suppressed and favoured B± → DK ± amplitudes is determined to be rKB = 0.097 ± 0.011

    First observation of the decay B0s→ϕK∗0

    Get PDF
    The first observation of the decay B0s→ϕK∗0 is reported. The analysis is based on a data sample corresponding to an integrated luminosity of 1.0 fb−1 of pp collisions at s√=7 TeV, collected with the LHCb detector. A yield of 30 ± 6 B0s→(K+K−)(K−π+) decays is found in the mass windows 1012.5 < M (K + K −) < 1026.5 MeV/c 2 and 746 < M(K − π +) < 1046 MeV/c 2. The signal yield is found to be dominated by B0s→ϕK∗0 decays, and the corresponding branching fraction is measured to be B(B0s→ϕK∗0) = (1.10 ± 0.24 (stat) ± 0.14 (syst) ± 0.08 (f d /f s )) × 10−6, where the uncertainties are statistical, systematic and from the ratio of fragmentation fractions f d /f s which accounts for the different production rate of B 0 and B0s mesons. The significance of B0s→ϕK∗0 signal is 6.1 standard deviations. The fraction of longitudinal polarization in B0s→ϕK∗0 decays is found to be f 0 = 0.51 ± 0.15 (stat) ± 0.07 (syst)

    Measurement of the resonant and CP components in B¯ 0 → J=ψπþπ− decays

    Get PDF
    The resonant structure of the reaction B¯0→J/ψπ+π− is studied using data from 3  fb−1 of integrated luminosity collected by the LHCb experiment, one third at 7 TeV center-of-mass energy and the remainder at 8 TeV. The invariant mass of the π+π− pair and three decay angular distributions are used to determine the fractions of the resonant and nonresonant components. Six interfering π+π− states, ρ(770), f0(500), f2(1270), ρ(1450), ω(782) and ρ(1700), are required to give a good description of invariant mass spectra and decay angular distributions. The positive and negative charge parity fractions of each of the resonant final states are determined. The f0(980) meson is not seen and the upper limit on its presence, compared with the observed f0(500) rate, is inconsistent with a model where these scalar mesons are formed from two quarks and two antiquarks (tetraquarks) at the eight standard deviation level. In the qq¯ model, the absolute value of the mixing angle between the f0(980) and the f0(500) scalar mesons is limited to be less than 17° at 90% confidence level

    Searches for Majorana neutrinos in B-decays

    Get PDF
    Searches for heavy Majorana neutrinos in B- decays in final states containing hadrons plus a μ-μ- pair have been performed using 0.41  fb-1 of data collected with the LHCb detector in proton-proton collisions at a center-of-mass energy of 7 TeV. The D+μ-μ- and D*+μ-μ- final states can arise from the presence of virtual Majorana neutrinos of any mass. Other final states containing π+, Ds+, or D0π+ can be mediated by an on-shell Majorana neutrino. No signals are found and upper limits are set on Majorana neutrino production as a function of mass, and also on the B- decay branching fractions

    Measurement of ψ(2S) polarisation in pp collisions at √s = 7 TeV

    Get PDF
    The polarisation of prompt ψ(2S) mesons is measured by performing an angular analysis of ψ(2S) → μ+μ- decays using proton-proton collision data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb detector at a centre-of-mass energy of 7 TeV. The polarisation is measured in bins of transverse momentum pT and rapidity y in the kinematic region 3.5 < pT < 15 GeV/c and 2.0 < y < 4.5, and is compared to theoretical models. No significant polarisation is observed
    corecore