1,115 research outputs found

    Herbivore induction of the glucosinolate-myrosinase defense system: major trends, biochemical bases and ecological significance

    Get PDF
    Like many other plant defense compounds, glucosinolates are present constitutively in plant tissues, but are also induced to higher levels by herbivore attack. Of the major glucosinolate types, indolic glucosinolates are most frequently induced regardl

    Plants protect themselves from herbivores by optimizing the distribution of chemical defenses

    Get PDF

    Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer

    Get PDF
    We present a complete experimental characterization of a quasioptical twin-slot antenna coupled small area (1.0×0.15 µm^2) NbN hot electron bolometer (HEB) mixer compatible with currently available solid state tunable local oscillator (LO) sources. The required LO power absorbed in the HEB is analyzed in detail and equals only 25 nW. Due to the small HEB volume and wide antenna bandwidth, an unwanted direct detection effect is observed which decreases the apparent sensitivity. Correcting for this effect results in a receiver noise temperature of 700 K at 1.46 THz. The intermediate frequency (IF) gain bandwidth is 2.3 GHz and the IF noise bandwidth is 4 GHz. The single channel receiver stability is limited to 0.2–0.3 s in a 50 MHz bandwidth

    Demonstrating the role of symbionts in mediating detoxification in herbivores

    Get PDF

    Evolution of DIMBOA-Glc o-methyltransferases from flavonoid o-methyltransferases in the grasses

    Get PDF
    O-Methylated benzoxazinoids (BXs) and flavonoids are widespread defenses against herbivores and pathogens in the grasses (Poaceae). Recently, two flavonoid O-methyltransferases (FOMTs), ZmFOMT2 and ZmFOMT3, have been reported to produce phytoalexins in maize (Zea mays). ZmFOMT2 and ZmFOMT3 are closely related to the BX O-methyltransferases (OMTs) ZmBX10-12 and ZmBX14, suggesting a common evolutionary origin in the Poaceae. Here, we studied the evolution and enzymatic requirements of flavonoid and BX O-methylation activities in more detail. Using BLAST searches and phylogenetic analyses, we identified enzymes homologous to ZmFOMT2 and ZmFOMT3, ZmBX10-12, and ZmBX14 in several grasses, with the most closely related candidates found almost exclusively in species of the Panicoideae subfamily. Biochemical characterization of candidate enzymes from sorghum (Sorghum bicolor), sugar cane (Saccharum spp.), and teosinte (Zea nicaraguensis) revealed either flavonoid 5-O-methylation activity or DIMBOA-Glc 4-O-methylation activity. However, DIMBOA-Glc 4-OMTs from maize and teosinte also accepted flavonols as substrates and converted them to 3-O-methylated derivatives, suggesting an evolutionary relationship between these two activities. Homology modeling, sequence comparisons, and site-directed mutagenesis led to the identification of active site residues crucial for FOMT and BX OMT activity. However, the full conversion of ZmFOMT2 activity into BX OMT activity by switching these residues was not successful. Only trace O-methylation of BXs was observed, indicating that amino acids outside the active site cavity are also involved in determining the different substrate specificities. Altogether, the results of our study suggest that BX OMTs have evolved from the ubiquitous FOMTs in the PACMAD clade of the grasses through a complex series of amino acid changes

    Four genes encoding MYB28, a major transcriptional regulator of the aliphatic glucosinolate pathway, are differentially expressed in the allopolypoloid Brassica juncea

    Get PDF
    Glucosinolates are Capparales-specific secondary metabolites that have immense potential in human health and agriculture. Unlike Arabidopsis thaliana, our knowledge about glucosinolate regulators in the Brassica crops is sparse. In the current study, four MYB28 homologues were identified (BjuMYB28-1,-2,-3,-4) from the polyploid Brassica juncea, and the effects of allopolyploidization on the divergence of gene sequence, structure, function, and expression were assessed. The deduced protein sequences of the four BjuMYB28 genes showed 76.1–83.1% identity with the Arabidopsis MYB28. Phylogenetic analysis revealed that the four BjuMYB28 proteins have evolved via the hybridization and duplication processes forming the B. juncea genome (AABB) from B. rapa (AA) and B. nigra (BB), while retaining high levels of sequence conservation. Mutant complementation and over-expression studies in A. thaliana showed that all four BjuMYB28 genes encode functional MYB28 proteins and resulted in similar aliphatic glucosinolate composition and content. Detailed expression analysis using qRT-PCR assays and promoter-GUS lines revealed that the BjuMYB28 genes have both tissue- and cell-specific expression partitioning in B. juncea. The two B-genome origin BjuMYB28 genes had more abundant transcripts during the early stages of plant development than the A-genome origin genes. However, with the onset of the reproductive phase, expression levels of all four BjuMYB28 increased significantly, which may be necessary for producing and maintaining high amounts of aliphatic glucosinolates during the later stages of plant development. Taken together, our results suggest that the four MYB28 genes are differentially expressed and regulated in B. juncea to play discrete though overlapping roles in controlling aliphatic glucosinolate biosynthesis

    A peroxisomal beta-oxidative pathway contributes to the formation of C<sub>6</sub>-C<sub>1</sub> aromatic volatiles in poplar

    Get PDF
    Benzenoids (C(6)–C(1) aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C(6)–C(3)). The biosynthesis of C(6)–C(1) aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C(6)–C(1) aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway
    • …
    corecore