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Abstract Like many other plant defense com-

pounds, glucosinolates are present constitutively in

plant tissues, but are also induced to higher levels by

herbivore attack. Of the major glucosinolate types,

indolic glucosinolates are most frequently induced

regardless of the type of herbivore involved. Over

90% of previous studies found that herbivore damage

to glucosinolate-containing plants led to an increased

accumulation of indolic glucosinolates at levels

ranging up to 20-fold. Aliphatic and aromatic gluc-

osinolates are also commonly induced by herbivores,

though usually at much lower magnitudes than indolic

glucosinolates, and aliphatic and aromatic glucosin-

olates may even undergo declines following

herbivory. The glucosinolate defense system also

requires another partner, the enzyme myrosinase, to

hydrolyze the parent glucosinolates into biologically

active derivatives. Much less is known about myro-

sinase induction after herbivory compared to

glucosinolate induction, and no general trends are

evident. However, it is clear that insect feeding

stimulates the formation of various myrosinase asso-

ciated proteins whose function is not yet understood.

The biochemical mechanism of glucosinolate induc-

tion involves a jasmonate signaling cascade that leads

eventually to increases in the transcript levels of

glucosinolate biosynthetic genes. Several recently

described transcription factors controlling glucosino-

late biosynthesis are activated by herbivory or

wounding. Herbivore induction of glucosinolates has

sometimes been demonstrated to increase protection

against subsequent herbivore attack, but more

research is needed to evaluate the costs and benefits

of this phenomenon.
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Introduction

Among plant anti-herbivore defenses, glucosinolates

stand out in several important ways. First, they are low

molecular weight amino acid-derived metabolites that

have unusually high sulfur content. Their basic

skeleton consists of a b-D-glucose residue linked via

a sulfur atom to a (Z)-N-hydroximinosulfate ester and

a variable side chain (Halkier and Gershenzon 2006)

(Fig. 1). Second, despite the presence of over 120

different glucosinolate structures in plants (Fahey

et al. 2001), these substances are confined almost

completely to the order Brassicales, which includes

the Brassicaceae (cabbage, cauliflower, broccoli and

mustard), Capparaceae (capers) and 13 other families.
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Third, glucosinolates by themselves have little bio-

logical activity, but upon plant damage they are

hydrolyzed by thioglucosidase enzymes, known as

myrosinases, to form a variety of hydrolysis products,

including isothiocyanates, nitriles, epithionitriles and

thiocyanates (Bones and Rossiter 1996). These hydro-

lysis products are responsible for the toxicity and

deterrence of glucosinolates to herbivores as well as

the taste and smell of cruciferous vegetables, their

anti-cancer activity, the role of Brassica crops as

biofumigants in agriculture, and nearly all other

biological activities of glucosinolates (Halkier and

Gershenzon 2006). Glucosinolate hydrolysis is

avoided in the plant because glucosinolates and

myrosinase are separated in different tissues or

cellular compartments. The glucosinolate–myrosinase

defense system is distributed throughout the organs of

the plant, including leaves, roots, flowers, fruit and

seeds.

Glucosinolates and herbivores

Many of the classic studies on the role of plant

metabolites in interactions with herbivores involve

glucosinolates (reviewed in Louda and Mole 1991).

These compounds have been recognized for years as

defenses because of their conversion to noxious

products upon plant damage. In general, glucosino-

lates and their hydrolysis products have negative

effects on a wide range of herbivores, including

mammals, birds, insects, mollusks, aquatic inverte-

brates and nematodes (Giamoustaris and Mithen

1995; Halkier and Gershenzon 2006). They exhibit

outright toxicity in some cases (Borek et al. 1997;

Lazzeri et al. 2004; Li et al. 2000), significant growth

inhibitory properties in others (Agrawal and Kurash-

ige 2003; Burow et al. 2006b), and serve as general

deterrents to herbivore feeding (Newman et al. 1992;

Noret et al. 2005; Siemens and Mitchell-Olds 1996).

That the glucosinolate hydrolysis products, rather the

parent glucosinolates, are responsible for these

effects is clear from studies in which hydrolysis

products were tested directly (Agrawal and Kurashige

2003; Borek et al. 1997). In addition, reduction of the

rate of hydrolysis by myrosinase inactivation or

breeding for low myrosinase levels significantly

reduced toxicity and deterrence (Li et al. 2000;

Newman et al. 1992). When hydrolysis products are

explicitly tested, isothiocyanates are often found to be

responsible for the activity of the parent glucosino-

lates (Borek et al. 1997; Burow et al. 2006b;

Wittstock et al. 2003). However, many of the

hydrolysis products have never been systematically

tested against herbivores and some are still being

described (Jander, this issue).

Specialist and generalist glucosinolate feeders

Like other classes of anti-herbivore defenses, gluco-

sinolates are not effective against all herbivores.

Certain specialists seem to feed without any negative

consequences on glucosinolate-containing plants. The

same compounds that poison and deter generalist

herbivores may function as feeding or oviposition

attractants to specialists (Mewis et al. 2002; Miles

et al. 2005; Rojas 1999). Attraction from a distance

may result from hydrolysis products, while glucosin-

olates or their hydrolysis products could serve as

contact cues (Renwick 2002).
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Specialist insects have developed several strate-

gies to circumvent glucosinolate toxicity by blocking

the formation of hydrolysis products. The diamond-

back moth, Plutella xylostella, has a sulfatase in its

gut which cleaves the sulfate residue from the

glucosinolate core structure and thus prevents its

hydrolysis by myrosinase (Ratzka et al. 2002). This

strategy is also evident in a generalist herbivore, the

desert locust, Schistocerca gregaria, which possesses

an inducible sulfatase activity that is elevated when

feeding on plants with high amounts of glucosinolates

(Falk and Gershenzon 2007). On the other hand, the

cabbage white butterfly, Pieris rapae, directs the

myrosinase catalyzed hydrolysis of glucosinolates

from isothiocyanates to nitriles with the aid of an

endogenous protein called NSP, the nitrile specifier

protein (Wittstock et al. 2004). Nitriles appear to be

less toxic to herbivorous insects than isothiocyanates

(Burow et al. 2006b), and are either excreted with the

feces or are further converted to glycine conjugates

(Vergara et al. 2006).

Another strategy by which herbivores could avoid

glucosinolate toxicity is to rapidly absorb glucosin-

olates from their digestive tracts before they can be

hydrolyzed. In fact, sequestration of dietary gluco-

sinolates is known for several species of insect

herbivores, and may have favorable consequences for

their own defense (Francis et al. 2001; Müller et al.

2002; Vlieger et al. 2004). Sequestered glucosinolates

act as deterrents for predators such as birds, lizards

and ants.

Induction of glucosinolates

In common with many other defense metabolites,

glucosinolates are present constitutively in plants, but

are also inducible by herbivores. The amounts

observed vary depending on the organ, developmen-

tal stage, time of day and physical factors of the

environment (Bellostas et al. 2007; Brown et al.

2003; Falk et al. 2007; Petersen et al. 2002; Rosa

et al. 1994; Shelton 2005), but glucosinolates are

usually present throughout the plant at easily detect-

able levels. Yet following herbivore damage or

simulated damage, the amounts of certain glucosin-

olates are typically induced by several-fold.

Glucosinolate induction by herbivory has been doc-

umented for a number of plant species. Table 1

provides an overview of published studies of gluco-

sinolate induction giving the effect of herbivory on

total glucosinolate content and on the major catego-

ries of glucosinolates. The list is organized first by

plant species (in alphabetical order), and then by the

damaging agent. We have included not only studies

employing herbivore damage, but also those using

mechanical damage and treatment with plant growth

regulators, e.g. jasmonates, to simulate herbivory.

Variation by glucosinolate type

The three major types of glucosinolates, aliphatic,

aromatic and indolic (Fig. 1), are listed separately

because they often respond differently to herbivory.

This is not unexpected because these types are

formed from different amino acid precursors: alanine,

isoleucine, leucine, methionine and valine for ali-

phatic glucosinolates, phenylalanine and tyrosine for

aromatic glucosinolates and tryptophan for indolic

glucosinolates. In addition, different enzymes are

involved, especially at the early stages of biosynthe-

sis (Halkier and Gershenzon 2006) and there are

different regulatory factors (Gigolashvili et al. 2007a,

b, 2008; Hirai et al. 2007; Sonderby et al. 2007).

Of the three major types of glucosinolates, indolic

glucosinolates are most often reported to be induced by

herbivory. Considering all of the studies reviewed

here, over 90% describe a significant increase in

indolic glucosinolates which ranges from 1.2- to

20-fold. This generalization holds true regardless of

the insect herbivore involved. Representatives of the

Coleoptera, Diptera, Homoptera, Hymenoptera and

Lepidoptera all induced increased accumulation of

indolic glucosinolates. The major indolic glucosino-

lates present before herbivory in all plants studied is

indol-3-ylmethyl glucosinolate (Fig. 1), and typically

this compound increases on herbivory. But, in addition,

several other indolic glucosinolates present constitu-

tively at low levels, 1-methoxyindol-3-ylmethyl-,

4-methoxyindol-3-ylmethyl- and 4-hydroxyindol-

3-ylmethyl-glucosinolate (Fig. 1), increase their

accumulation many-fold after herbivory or after

treatment with jasmonates or salicylic acid (Kim

and Jander 2007; Kliebenstein et al. 2002; Mikkelsen

et al. 2003; Liang et al. 2006). These findings suggest

that such modified indolic glucosinolates have

specific roles in anti-herbivore defense (Kim and

Jander 2007).
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Significant increases in the other major classes of

glucosinolates, aliphatic and aromatic, are also regu-

larly reported after herbivory, though these are

typically of much lower magnitude than the increases

for indolic glucosinolates (1.2- to 3-fold). Further-

more, aliphatic and aromatic glucosinolates

sometimes even decline after herbivory (Birch et al.

1992; Gols et al. 2008; Hopkins et al. 1998; Koritsas

et al. 1989, 1991; Müller and Sieling 2006; van Dam

and Raaijmakers 2006), a behavior almost never

reported for indolic glucosinolates.

Variation by plant species

Among plant species, there are substantial differences

in reported glucosinolate inducibility. In part this

reflects differences in the type and amount of

herbivore damage imposed and the timing and

location of the sampling afterwards. However, there

are also biological differences in inducibility among

species. In fact, within a species even ecotypes

(Bidart-Bouzat et al. 2005; Kliebenstein et al. 2002)

and cultivars (Birch et al. 1992, 1996) differ in

glucosinolate response to herbivory. Interestingly,

plants from a wild population of Brassica oleracea

were found to have higher glucosinolate concentra-

tions and higher inducibility after herbivory than

plants of a B. oleracea cultivar (Gols et al. 2008).

Even greater differences may be revealed by

further studies of glucosinolate induction. To date

nearly all studies have focused on members of the

Brassicaceae, especially Arabidopsis thaliana and

Brassica vegetables and oilseed cultivars. Glucosin-

olate induction has been investigated in only two

species from other plant families, Carica papaya

(Caricaceae) and Tropaeolum majus (Tropaeolaceae)

(Ludwig-Müller et al. 2002). However, these have

been analyzed only after application of the growth

regulators, jasmonic acid and salicylic acid, and not

following actual herbivory. Thus the full range of

glucosinolate response to herbivores may still be

unknown.

Induction of myrosinase

Glucosinolates are converted into biologically active

hydrolysis products by myrosinase-mediated cataly-

sis. Hence one might predict that an increase in

myrosinase activity, like an increase in glucosinolate

level, could enhance the defensive potential of

glucosinolate-containing plants. This expectation is

sometimes met. For example, an approximately

4-fold difference in myrosinase activity among lines

of Brassica juncea decreased feeding by Plutella

xylostella on the highest activity lines relative to the

lowest, but there was no difference in feeding by

Spodoptera eridania on these same lines (Li et al.

2000). Similarly, when Brassica rapa populations

were artificially selected for divergent myrosinase

levels, the high myrosinase population (*2.5-fold

higher enzyme activity than the low myrosinase

population) was more resistant to the flea beetle

Phyllotreta cruciferae than the low myrosinase

population (Siemens and Mitchell-Olds 1998). In

contrast, variation in myrosinase levels had no effect

on the feeding behavior of Brevicoryne brassicae on

Arabidopsis thaliana (Barth and Jander 2006) or

Athalia rosae on Sinapis alba (Müller and Sieling

2006; Travers-Martin and Müller 2007).

Thus changes in myrosinase activity could impact

a plant’s ability to defend itself against herbivores.

But, unfortunately myrosinase activity has not been

measured nearly as frequently as glucosinolate con-

tent, and the reports available show no clear trend.

Myrosinase activity increases up to 3-fold after

specialist herbivore attack by P. xylostella on

B. rapa (Siemens and Mitchell-Olds 1998) and by

A. rosae on S. alba (Martin and Müller 2007;

Travers-Martin and Müller 2007). However, feeding

by the generalist lepidopteran, Spodoptera frugiperda

on S. alba had no influence on myrosinase activity

(Travers-Martin and Müller 2007). Curiously in

S. alba there were substantial changes in the relative

amount of myrosinase in soluble versus insoluble

fractions, as measured under non-denaturing condi-

tions. Insoluble activity typically increased up to

3-fold, with only low or no increase in soluble

activity (Travers-Martin and Müller 2007). Insolubil-

ity does not appear to compromise catalytic ability,

and has been attributed to complexation with asso-

ciated proteins (Eriksson et al. 2002). Some studies

on myrosinase activity in response to herbivores even

report a net decline in activity, such as after A. rosae

feeding on B. juncea (Müller and Sieling 2006) and

P. xylostella feeding on Brassica napus (Pontoppidan

et al. 2005). These declines were due to decreases

in soluble activity, while insoluble activity was not
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affected. In A. thaliana, a decline in myrosinase

activity was observed in hypocotyls after methyl

jasmonate application (Alvarez et al. 2008).

Myrosinase levels have also been followed by

transcript level measurements. Significant declines

were apparent in gene transcripts encoding the

A. thaliana myrosinases tgg1 and tgg2 in most

ecotypes after infestation with the specialist aphid,

B. brassicae or the generalist aphid, Myzus persicae

(Kusnierczyk et al. 2007). A similar trend was seen

earlier for myrosinase transcripts in B. napus infested

with B. brassicae (Pontoppidan et al. 2003), but

myrosinase transcript levels rose 1.5-fold in B. napus

after P. xylostella feeding (Pontoppidan et al. 2005)

and increased after jasmonate treatment in A. thaliana

(Jost et al. 2005). Unfortunately, the effects of these

transcript changes on myrosinase activity have not

been documented. Moreover, the effects of changes

in myrosinase activity on plant resistance are not well

understood. Further experiments are needed to inves-

tigate the effect of herbivory on myrosinase levels.

These results along with studies of transgenic plant

lines containing varying concentrations of both

glucosinolates and myrosinases would be helpful in

assessing how myrosinase levels affect the defensive

potential of glucosinolates.

Proteins associated with myrosinase

The outcome of glucosinolate hydrolysis in plants is

mediated not only by myrosinase, but by other plant-

derived proteins including ESP (Burow et al. 2006a;

Lambrix et al. 2001), ESM1 (Zhang et al. 2006) and

TSP (Burow et al. 2007) that alter the composition of

hydrolysis products. Transcript levels of both ESP

and ESM1 in A. thaliana were reported to decline

after feeding by the aphids M. persicae and B.

brassicae (Kusnierczyk et al. 2007).

Other types of proteins are closely associated with

myrosinase and have been designated as myrosinase

binding proteins, myrosinase associated proteins and

myrosinase binding protein-related proteins (Rask

et al. 2000). First noted by their co-precipitation with

myrosinase in the presence of antibodies raised

against myrosinase, these proteins appear to bind

myrosinase in insoluble complexes (Eriksson et al.

2002), although this behavior may simply be an

artifact of extraction. Transcripts of myrosinase

associated proteins and myrosinase binding proteins

have been shown to be induced locally and system-

ically in a variety of plant systems by both specialist

and generalist herbivores (Andreasson et al. 1999;

Kusnierczyk et al. 2007; Pontoppidan et al. 2003,

2005; Reymond et al. 2004; Sarosh and Meijer 2007)

as well as by mechanical wounding and jasmonate

treatment (Andreasson et al. 1999; Sarosh and Meijer

2007; Sasaki-Sekimoto et al. 2005: Taipalensuu et al.

1996, 1997), implying that there may be a role for

these proteins in plant protection. They have been

proposed to stabilize myrosinase activity or alter

other enzymatic properties, such as substrate or

product specificity, but no supporting evidence is

yet available (Eriksson et al. 2002; Rask et al. 2000).

In summary, there is no general induction of

myrosinase activity after herbivory. Instead, insect

feeding triggers appearance of various associated

proteins whose functions remain to be elucidated.

Biochemical bases of induction

Our knowledge of how plants respond to herbivory at

the biochemical and molecular levels has expanded

dramatically in recent years. Since a major portion of

this research has been carried out with Arabidopsis

thaliana, which happens to contain glucosinolates

and myrosinases, much has been learned that is

relevant to their induction, especially in the area of

signaling.

Jasmonate signaling

One of the major findings is that the induction of

glucosinolates is mediated by jasmonate signaling. As

already seen in Table 1, jasmonate or methyl jasmo-

nate treatments, like herbivory, stimulated an

induction in glucosinolate content in every species

tested. As with herbivory, indolic glucosinolates were

most frequently induced, but aliphatic and aromatic

glucosinolates were also induced in a number of

species. At the molecular level, experiments with

A. thaliana showed that jasmonates increase the

transcript levels of various glucosinolate biosynthetic

genes, including those for all of the known steps of

the core pathway of indolic glucosinolates (Fig. 2)

(Halkier and Gershenzon 2006). Included on this list are

(1) CYP79B2 and CYP79B3: catalyzing the oxidation

of tryptophan to indol-3-acetaldoxime (Brader et al.
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ü
ll

er
(2

0
0

7
)

In
d

o
li

c
(u

p
to

2
.4

9
)

T
ro

p
a

eo
lu

m
m

a
ju

s
L

.
JA

A
ro

m
at

ic
(2

.1
9

)
L

u
d

w
ig

-M
ü

ll
er

et
al

.
(2

0
0

2
)

In
d

o
li

c
(p

re
se

n
t

o
n

ly
af

te
r

tr
ea

tm
en

t)

S
A

A
ro

m
at

ic
(2

.1
9

)
L

u
d

w
ig

-M
ü
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2001; Mikkelsen et al. 2003; Sasaki-Sekimoto et al.

2005), (2) CYP83B1: catalyzing further oxidation to

form an aci-nitro intermediate (Sasaki-Sekimoto et al.

2005), (3) a C-S lyase activity that converts indol-3-

ylmethyl S-alkyl thiohydroximate to indol-3-ylmethyl

thiohydroximate (Sasaki-Sekimoto et al. 2005), (4) S-

GT: glucosylating the thiohydroximate to form indol-3-

ylmethyl desulfoglucosinolate (Brader et al. 2001;

Sasaki-Sekimoto et al. 2005) and (5) AtST5a: a

sulfotransferase that forms the final indol-3-ylmethyl

glucosinolate (Piotrowski et al. 2004). Interestingly,

transcripts encoding various steps of tryptophan bio-

synthesis are also elevated (Brader et al. 2001; Sasaki-

Sekimoto et al. 2005).

N
OH

S

N
OH

H

O

N
OH

H

NH3

COO
H

Tryptophan

Indol-3-acetaldoxime

aci-Nitro
compound

Indol-3-ylmethyl-S-alkyl-
thiohydroximate

CYP79B2

CYP83B1

?

N
H

N
H

N
H

N
H

C-S lyase

CYP79B3

R

Indol-3-ylmethyl
thiohydroximate

Indol-3-ylmethyldesulfo
glucosinolate

Indol-3-ylmethyl
glucosinolate

S-GT
(S-Glucosyltransferase)

AtST5a 
(Sulfotransferase)

N
OSO3

Glc
S

N
H

N
OH

SH

N
H

N
OH

S

N
H

Glc

Secondary oxidation 
and substitution

a b

Fig. 2 Outline of the core pathway of indolic glucosinolate

biosynthesis listing the enzymes catalyzing each step. The

identity of the CYP83B1 product and the nature of the

following step are still unknown. Aliphatic and aromatic

glucosinolate biosynthesis are similar but the aliphatic pathway

begins with alanine, methionine or a branched chain amino

acid instead of tryptophan, while the aromatic pathway begins

with phenylalanine or tyrosine. In the case of methionine, and

some other amino acids, the basic amino acid structure is often

subject to side chain elongation before entering the core

pathway
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Further confirmation of the role of jasmonate

signaling in glucosinolate induction comes from

studies with coi1, an A. thaliana mutant line blocked

in jasmonate signaling. The coi1 mutant had lower

levels of constitutive glucosinolates than the corre-

sponding Columbia-0 wild-type, and displayed

virtually no induction of indolic glucosinolates in

response to various herbivores (Brader et al. 2001;

Mewis et al. 2005, 2006; Mikkelsen et al. 2003). In

addition, most of the glucosinolate biosynthetic gene

transcripts elevated by herbivory on wild-type plants

responded oppositely or not at all in coi1 (Mewis

et al. 2006).

Other signaling pathways

Since coi1 plants still showed induction of aliphatic

glucosinolates after herbivory (Mewis et al. 2005,

2006), signaling cascades besides that of jasmonate

must be involved in regulating glucosinolate accu-

mulation. Ethylene signaling is implicated since the

ethylene-insensitive mutant etr1 did not show any

induction of aliphatic glucosinolates in response to

the herbivores, Myzus persicae, Brevicoryne brassi-

cae and Spodoptera exigua, as the wild-type did

(Mewis et al. 2005, 2006). At the same time, there

was no elevation of the transcript levels of aliphatic

glucosinolate biosynthetic genes in herbivore-dam-

aged etr1 plants, as was observed in the wild-type

(Mewis et al. 2006). Experiments with another

ethylene signaling mutant, ctr1, showed little differ-

ence in glucosinolate profile from that of the wild-

type (Mikkelsen et al. 2003).

Salicylate-dependent signaling is known to be

involved in plant defense responses to aphids and

other herbivores. Accordingly, salicylic acid (SA)

application led to the induction of various glucosin-

olate types in different species (Kiddle et al. 1994;

Ludwig-Müller et al. 2002, van Dam et al. 2003), but

also caused some declines in glucosinolate content

(Kiddle et al. 1994; van Dam et al. 2003). Experi-

ments with SA-signaling mutants of A. thaliana

supported both of these trends. The induction of

aliphatic glucosinolates by aphids and S. exigua in

wild-type A. thaliana was not observed in the npr1

mutant (Mewis et al. 2006), suggesting SA involve-

ment in promoting induction. However, in SA-

overproducing mutants the jasmonate induction of

indolic glucosinolates was inhibited (Mikkelsen et al.

2003), consistent with other reports of SA antagonism

of jasmonate signaling. In A. thaliana, salicylic acid

application specifically promoted accumulation of

one species of indolic glucosinolate, 4-methoxyindol-

3-ylmethyl glucosinolate (Fig. 1) (Kliebenstein et al.

2002; Mikkelsen et al. 2003), but SA did not seem to

be involved in the induction of this compound in

A. thaliana by M. persicae (Kim and Jander 2007).

Transcription of biosynthetic genes

Regardless of the signaling cascades involved her-

bivory leads to the up-regulation of glucosinolate

biosynthetic gene transcripts by herbivores. A wide

range of A. thaliana genes is activated by herbivory,

including those encoding the CYP79 and CYP83

oxidation steps of the core pathway of aliphatic and

indolic glucosinolates (Fig. 2) (Kusnierczyk et al.

2007; Mewis et al. 2006; Reymond et al. 2004), as

well as the glucosyltransferase step of the core

pathway (Mewis et al. 2006). Herbivory and mechan-

ical wounding also increase the expression of genes

involved in forming the elongated side chains of

aliphatic glucosinolates, including genes encoding

the methionine aminotransferases (BCAT3 and

BCAT4, Knill et al. 2008; Schuster et al. 2006), the

methylthioalkylmalate synthases (MAM1 and

MAM3, Mewis et al. 2006) and enzymes of the

pathway to tryptophan, the substrate for indolic

glucosinolates (Kusnierczyk et al. 2007; Reymond

et al. 2004). These results underscore the fact that

induced glucosinolate accumulation in plants is likely

to result from de novo synthesis rather than transport

from other organs, and that biosynthesis is controlled

at the level of transcription of pathway genes.

Curiously, the increase in biosynthetic gene tran-

scripts is not always accompanied by increased

glucosinolate accumulation. For example, Pieris

rapae induced the expression of several genes of

aliphatic glucosinolate biosynthesis when feeding on

A. thaliana, but there was no observable change in

aliphatic glucosinolate content up to 3 days after

feeding (Mewis et al. 2006). In contrast, both

glucosinolate biosynthetic gene transcripts and gluc-

osinolate accumulation were induced by 3 days of

Spodoptera exigua feeding in the same study. Thus,

there must be factors other than biosynthetic gene

expression and signal transduction pathways that

regulate glucosinolate induction. Other control points
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could include precursor supply, post-transcriptional

regulation of biosynthetic enzymes, expression of

regulatory genes and cellular compartmentation.

Regulatory genes

There has been some exciting recent progress in the

identification of regulatory genes that control gluco-

sinolate biosynthesis. Using knock-out and over-

expressing lines of A. thaliana, a number of regulatory

genes have been discovered that significantly modu-

late glucosinolate levels. Several of these affect both

aliphatic and indolic glucosinolate formation includ-

ing IQD1, a calmodulin-binding protein (Levy et al.

2005), AtDof1.1, a DNA binding-with-one-finger

transcription factor (Skirycz et al. 2006) and TFL2,

a heterochromatic protein (Bennett et al. 2005; Kim

et al. 2004). While expression of these three genes

promotes glucosinolate formation, a fourth regulatory

gene, an EIL family transcription factor named SLIM1

expressed under sulfur-limiting conditions, inhibits

glucosinolate formation (Maruyama-Nakashita et al.

2006). Other newly-discovered glucosinolate tran-

scription factors are members of the R2R3 MYB gene

family. Some of these affect indolic glucosinolate

formation specifically, including MYB34 (ATR1)

(Celenza et al. 2005), MYB51 (Gigolashvili et al.

2007a) and MYB122 (Gigolashvili et al. 2007a), by

activating genes of the indolic glucosinolate pathway

as well as genes of tryptophan biosynthesis. Other

MYB proteins, namely MYB28, MYB29 and

MYB76, control aliphatic glucosinolate biosynthesis

by activating genes of the core aliphatic pathway,

methionine side chain elongation and some reactions

of general sulfur metabolism (Gigolashvili et al.

2007b, 2008; Hirai et al. 2007; Sonderby et al. 2007).

Many of these regulatory genes appear to play a

role in glucosinolate induction since their expression

is triggered by touch, mechanical wounding, methyl

jasmonate treatment or insect infestation (Table 2).

For example, the activation of indolic glucosinolate

biosynthesis by herbivory may be especially triggered

by MYB51 since, of the indolic glucosinolate tran-

scription factors described, its transcript level

increased fastest, within 10 min of wounding,

whereas MYB122 responded only after a delay of

1 h and MYB34 did not react to wounding at all

(Gigolashvili et al. 2007a). Among the aliphatic

glucosinolate transcription factors described,

expression of MYB28, MYB29 and MYB76 were

induced 1 min after mechanical wounding (Gigolash-

vili et al. 2008). In contrast, transcript of MYB29 was

induced by methyl jasmonate and repressed by SA,

but MYB28 and MYB76 did not respond to these

compounds (Gigolashvili et al. 2008). Instead,

MYB28 transcript level was enhanced by glucose

(Gigolashvili et al. 2007b). This response may

indicate that aliphatic glucosinolate biosynthesis is

also controlled by the availability of carbohydrate and

that synthesis may not occur unless an adequate

supply of carbohydrate is present. Alternately, glu-

cose-enhanced transcription of MYB28 may provide a

convenient mechanism for herbivore damage to

trigger glucosinolate induction, since tissue disruption

will result in local increases in glucose as a product of

myrosinase-catalyzed glucosinolate hydrolysis. Glu-

cose is known to function as a signal in many plant

processes (Price et al. 2004). Thus, MYB51 (indolic

glucosinolates) and any of the aliphatic glucosinolate

MYB transcription factors known could be important

components of the signaling chain causing glucosin-

olate induction after herbivory.

Biochemical basis of myrosinase induction

Compared to glucosinolates, much less is known

about the biochemical basis of myrosinase induction.

The numerous reports of changes in myrosinase

transcript level following herbivory (Jost et al. 2005;

Kusnierczyk et al. 2007; Pontoppidan et al. 2003,

2005) suggest that activity is regulated by gene

expression. However, myrosinase activity could also

be modulated by post-translational glycosylation,

complexation with associated proteins (Burow et al.

2006a; Eriksson et al. 2002; Zhang et al. 2006) or

levels of the essential cofactor ascorbate (Burmeister

et al. 2000). Changes in the abundance of different

myrosinase species with varying substrate specifici-

ties could in theory also alter the defensive potential

of the glucosinolate–myrosinase system, but there is

no evidence as yet supporting this possibility.

Ecological significance of glucosinolate induction

Although the induction of glucosinolates, especially

indolic glucosinolates, by herbivore damage is a

general response of most glucosinolate-containing
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plants studied, the ecological consequences of this

phenomenon are not always clear. To evaluate the

significance of glucosinolate induction, we here

summarize the pattern of response to different types

of herbivores and other enemies, the timing and

location of the response and whether or not there are

any actual benefits in plant protection.

Variation with herbivore guild

A striking trend visible in Table 1 is that herbivores

from different guilds have very distinct effects on

glucosinolate profiles. Aphids, which are sucking

insects, trigger less induction than chewing insects,

including beetles, caterpillars and flies, and may even

cause a decline in total glucosinolates. Aphids feed

only on single cells of the phloem and so may not

trigger the myrosinase-catalyzed breakdown of

glucosinolates to active hydrolysis products since

glucosinolates and myrosinases are thought to be

located in separate cells (Barth and Jander 2006).

Thus, from the plant’s perspective, induction of

glucosinolates may not have any defensive value

against aphids. However, recent investigations on

Myzus persicae feeding on Arabidopsis thaliana

demonstrated that one indolic glucosinolate species,

4-methoxyindol-3-ylmethyl glucosinolate (Fig. 1),

was induced on aphid infestation. Indolic glucosin-

olates are known to be chemically less stable than

aliphatic glucosinolates and so may be effective

defenses even without myrosinase due to non-enzy-

matic conversion to toxic products (Jander, this

issue). In support of this proposition, indolic gluco-

sinolates were found to be mostly degraded after

passage through M. persicae while aliphatic gluco-

sinolates were not (Kim and Jander 2007).

Glucosinolate hydrolysis within an insect such as

M. persicae may be due to the action of glucohydro-

lases produced by the insect or bacterial symbionts,

as well as to non-enzymatic processes. Consistent

with their defensive role, indolic glucosinolates,

especially 4-methoxyindol-3-ylmethyl and 1-meth-

oxyindol-3-ylmethyl glucosinolates (Fig. 1),

significantly reduce aphid reproduction (Kim and

Jander 2007).

Although there is much less information on

myrosinase induction by herbivores compared to

glucosinolate induction, a similar trend is evident

with regard to variation among guilds. Aphid

infestation always leads to a decline in myrosinase

transcript level (Kusnierczyk et al. 2007; Pontoppi-

dan et al. 2003). Attack by chewing insects, on the

other hand, did not cause a decline in myrosinase in

the majority of cases, but rather triggered an increase

in myrosinase enzyme activity or transcript level

(Martin and Müller 2007; Pontoppidan et al. 2005;

Siemens and Mitchell-Olds 1998; Travers-Martin and

Müller 2007) or had no effect (Travers-Martin and

Müller 2007).

Variation between generalists and specialists

In comparing the results of experiments with gener-

alist and specialist herbivores, no dramatic differences

in glucosinolate induction patterns can be discerned.

This trend is consistent with the fact that generalist

and specialist herbivores have remarkably similar

effects on gene expression profiles, at least in

A. thaliana (Kusnierczyk et al. 2007; Moran et al.

2002; Reymond et al. 2004). However, there is a

tendency for plants to decrease their levels of aliphatic

and aromatic glucosinolates more often in response to

specialist than generalist herbivores. For example,

feeding of Delia floralis and D. radicum led to

declines of aliphatic or aromatic glucosinolates of up

to 60%, while indolic glucosinolates increased (Birch

et al. 1992; Hopkins et al. 1998; van Dam and

Raaijmakers 2006). Attack of two specialist herbi-

vores, one above ground and one below ground led to

a 50–70% reduction in leaf glucosinolate content

(Soler et al. 2005). If a plant detects attack by a

specialist rather than a generalist, it may be a sensible

strategy to avoid committing further resources to

glucosinolate production. Certain specialist herbi-

vores are known to have biochemical mechanisms

allowing them to circumvent the effects of glucosin-

olates (Ratzka et al. 2002; Wittstock et al. 2004).

Studies on myrosinase induction by herbivores are

few in number, but these also show no dramatic

differences in the effects of generalist versus specialist

feeders.

Induction by mechanical wounding and pathogens

Simulation of herbivory by mechanical wounding

also triggers increases in plant glucosinolate content

(Griffiths et al. 1994; Koritsas et al. 1989). However,

the magnitude of this increase is rarely equivalent to
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that caused by actual herbivory, perhaps because

mechanical damage treatments are usually adminis-

tered only once while actual herbivore damage

involves repeated wounding over a long period of

time (Mithöfer et al. 2005). When mechanical

wounding of Brassica napus cotyledons was divided

among two consecutive days, rather than being given

on a single day, there was greater glucosinolate

induction (Bodnaryk 1992).

Herbivores are not the only plant enemies that can

induce glucosinolate formation. Increases in plant

glucosinolate content, especially in indolic glucosin-

olates, are also frequently reported in response to the

attack of fungi and bacteria (Brader et al. 2001;

Ludwig-Müller et al. 1997, 2002; Rostàs et al. 2002;

Vierheilig et al. 2000). These increases are not

surprising in light of the fact that glucosinolates are

also considered as defenses against some microor-

ganisms, especially nectrotrophs (Li et al. 1999; Mari

et al. 2002; Smith and Kirkegaard 2002). However,

the magnitude of the increase is sometimes less than

that induced by herbivores or not evident at all

(Doughty et al. 1995; Kliebenstein et al. 2005;

Koritsas et al. 1989).

If the increase in glucosinolates in response to

herbivory protects plants against further attack, more

extensive herbivory should result in greater gluco-

sinolate induction. This trend holds for damage

caused by the lepidopteran Pieris rapae (Shelton

2005), the dipterans D. floralis (Hopkins et al. 1998)

and D. radicum (Soler et al. 2005), and mechanical

damage meant to simulate herbivory (Bodnaryk

1992), but the effect is not always linear.

Local versus systemic induction

The presence of herbivores on one part of the plant is

often a reliable indication that other parts of the plant

will be attacked as well in due course. Hence it is not

surprising that herbivory causes not only local

induction of glucosinolates, but also induction in

more distant parts of the plant. Several examples of

this phenomenon have been noted in the studies under

review here. For example, when the flea beetle

Psylliodes chrysocephala was bagged on the third

true leaf of B. napus, indolic glucosinolates increased

over 7-fold in the seventh as well as the third leaf

(Bartlet et al. 1999). P. chrysocephala also increases

indolic glucosinolates substantially in undamaged

plant parts adjacent to the attack site (Koritsas et al.

1991). However, sometimes changes in adjacent parts

are much lower in magnitude or not significant at all

(Kim and Jander 2007; Martin and Müller, 2007;

Travers-Martin and Müller 2007; van Dam and

Raaijmakers 2006). For example, feeding by the

specialist hymenopteran Athalia rosae caused a more

than 9-fold increase in benzyl glucosinolate levels in

damaged leaves of Sinapis alba, but only slightly

more than a 2-fold increase in undamaged, flanking

leaves (Martin and Müller 2007). Induction of indol-

3-ylmethyl glucosinolate in this study was over

19-fold in damaged leaves, but was not seen in

undamaged leaves.

Long distance shoot-to-root transfer of the induc-

tion signal also occurs. Root herbivory by D. floralis

on Brassica, sp., which increased indolic glucosino-

lates in the roots, also caused lesser increases in the

leaves (Griffiths et al. 1994). In the other direction,

above ground herbivory by P. chrysocephala

increased glucosinolates in the roots of Brassica,

spp. (Koritsas et al. 1991). These long distance

inductions are probably mediated by signaling agents,

such as jasmonic acid and salicylic acid, since

treatment of either the shoot or root with these

compounds sometimes leads to glucosinolate induc-

tion in the other half of the plant (Ludwig-Müller

et al. 1997; van Dam et al. 2003). For a more detailed

comparison of glucosinolate induction in shoots and

roots, see van Dam et al. (this issue).

Relaxation time

If glucosinolate induction is a response to a specific

threat, it might be predicted that the level of these

defense compounds would return to normal, unin-

duced levels after a certain period of time. Indeed this

is what has been observed in at least one report. The

large increase in indolic (up to 19-fold) and aromatic

(up to 9-fold) glucosinolates seen in S. alba in

response to 24 h of A. rosae feeding reached a peak

1 day after the start of feeding and was almost

completely abolished by 3 days after feeding (Martin

and Müller 2007). Unfortunately, nearly all other

studies reviewed here measured glucosinolate content

at only one time point following herbivory. However,

a similar relaxation of glucosinolate induction was

noted in A. thaliana ecotype Ler after jasmonic acid

treatment (Kliebenstein et al. 2002). Aliphatic
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glucosinolate induction of 15-fold was observed 24 h

after treatment, but this was no longer evident by

48 h. Indolic glucosinolates, though, remained at

their induced level (approximately 2-fold that of

control plants) at 48 h.

Benefits of induction

The ecological significance of glucosinolate induc-

tion would be most convincingly demonstrated if the

change in glucosinolate content observed actually

increased plant protection against herbivory. In fact,

glucosinolate induction has been shown to be asso-

ciated with the reduced performance of herbivores in

several experimental systems including P. rapae on

Arabidopsis lyrata and Brassica oleracea (Agrawal

and Kurashige 2003), Pieris brassicae on Brassica

nigra after root damage by D. radicum (Soler et al.

2005), Spodoptera exigua and Heliothis zea on

Lepidium virginicum (Agrawal 2000) and S. exigua,

Myzus persicae and Brevicoryne brassicae on

A. thaliana (Mewis et al. 2005). However, glucosin-

olate induction was not correlated with larval

performance, feeding behavior or plant damage

in other systems, including Phyllotreta cruciferae

on Brassica, sp. (Bodnaryk 1992; Bodnaryk and

Palaniswamy 1990), P. rapae on L. virginicum

(Agrawal 2000) and A. rosae on S. alba (Travers-

Martin and Müller 2007). In these studies, increases

in glucosinolate content are reported to negatively

affect both specialist and generalist feeding insects,

but all of the insect herbivores that were unaffected

by an increase in glucosinolate content are specialist

feeders. Since two specialist lepidopterans, Plutella

xylostella (Ratzka et al. 2002) and P. rapae

(Wittstock et al. 2004) are known to have specific

mechanisms of circumventing the toxicity of gluco-

sinolates, an increase in glucosinolate content may be

less likely to be an effective defense against this type

of herbivore. But, plants could induce their gluco-

sinolate content anyway if they are not able to

distinguish the type of herbivore attacking them. To

be effective as an induced defense, it may not be

necessary to increase the overall glucosinolate con-

tent, but only to change its distribution. Damage to

Raphanus sativus by P. rapae was shown to increase

the small-scale spatial variation of glucosinolates

within leaves. This may reduce herbivory by prevent-

ing herbivores from readily identifying less defended

areas of the leaf or synchronizing their detoxification

systems with their diets (Shelton 2005).

Costs of induction

The most effective form of glucosinolate defense

against herbivores might be one that is present

constitutively at high levels. However, plant defenses

are believed to be costly so that high levels of

constitutive defenses are selected for only when

herbivory is high or plant parts are very valuable.

When the rate of herbivory is low or unpredictable,

inducible defenses may be selected to minimize costs

among other benefits (Zangerl 2003). The fact that

glucosinolate induction is limited to specific places

and times, as discussed above, is good evidence that

glucosinolates are costly. Further support for this

assertion comes from studies showing that higher

amounts of indolic glucosinolate induction in differ-

ent genotypes of B. nigra were associated with later

flowering times (Traw 2002). In addition, greater

induction of non-indolic glucosinolates in families of

wild radish (Raphanus raphanistrum) was associated

with reduction in fruit mass (Agrawal et al. 2002).

Moreover, the extent of glucosinolate induction is

negatively correlated with the level of constitutive

glucosinolates in B. nigra families (Traw 2002) and

A. thaliana ecotypes (Bidart-Bouzat et al. 2005). All

these lines of evidence indicate that glucosinolate

induction incurs sizable costs, and so is not likely to

persist evolutionarily unless it provides increased

protection from herbivores accompanied by substan-

tial fitness benefits. However, inferring costs for

glucosinolate induction is problematic because gluc-

osinolates may have other roles in plants, such as in

protection against pathogens or in inhibiting the

growth of competing plants. In addition, plants can

tolerate herbivory to a certain degree and compensate

by regrowth (Strauss and Agrawal 1999).

Future perspective

The induction of glucosinolates by herbivores shares

many characteristics with the induction of other plant

defense compounds. Induction is widespread and

sometimes substantial, but varies with plant geno-

type, the organ attacked, the type of herbivore and

environmental conditions. Herbivory alters the
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chemical composition of defenses as well as increas-

ing the total amount present, and induction is often

systemic as well as local. For the plant, induction is

costly, but the benefits are not always clear.

There is still much to learn about the ecological

significance of herbivore-induced defenses and the

underlying biochemical mechanisms of induction.

The glucosinolate–myrosinase system is a very

appropriate subject for this research thanks to the

wealth of information on its role in plant–insect

interactions of the Brassicaceae. In addition, since

glucosinolates are one of the many classes of

secondary metabolites in A. thaliana, the unsurpassed

genetic and genomic resources available for this

model species can be harnessed for an assortment of

biochemical, molecular and ecological studies.

Future research on glucosinolate induction would

be welcome in several areas. For example, more

studies on myrosinases are required to clarify how

myrosinase gene transcripts, protein levels and

enzyme activities change upon herbivory. In addition,

more effort is needed to investigate the ecological

significance of glucosinolate–myrosinase induction.

The creation of A. thaliana transformants with

different induction potential for testing with herbi-

vores (or the judicious use of natural variation among

ecotypes) could lead to significant progress in

assessing the ecological value of glucosinolate and

myrosinase inducibility.

The resources of A. thaliana should also facilitate

the identification of more genes controlling induction.

The results will give new insights into how plants

recognize different types of herbivorous attackers and

are able to elevate glucosinolate and myrosinase

accumulation locally and systemically. In this work,

special attention should be devoted to performing

molecular, chemical and biological experiments at

more time points and over longer time scales. Gene

expression is usually measured over a period of hours

or a few days after herbivory commences, and

glucosinolate and myrosinase content measured only

once or twice over a few days. However, some insects

typically feed on a plant for over a week. It would be

useful to know how plants respond to longer bouts of

insect feeding, what the kinetics of glucosinolate–

myrosinase induction over these periods is and what

molecular controls regulate it.

From a plant’s perspective, the costs and benefits

of glucosinolate–myrosinase induction may change

continuously with longer feeding bouts or other

challenges, such as the presence of more than one

species of herbivore or pathogen. To understand the

ecological and evolutionary significance of glucosin-

olate–myrosinase changes at the whole plant level

will require more complex experiments in which a

variety of parameters are measured in addition to

glucosinolate and myrosinase levels, such as growth

rate, speed of development and the production of

other defenses. Ultimately, glucosinolate–myrosinase

induction is just one of a vast ensemble of phenotypic

changes in plants following herbivory that may

increase resistance to further attack and enhance the

potential for regrowth. Understanding its significance

is a major challenge requiring the application of

molecular, biochemical and ecological methods.
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