21 research outputs found

    The “Sharp” blade against HIF-mediated metastasis

    Get PDF
    Hypoxia-inducible factors (HIFs) control cellular adaptation to oxygen deprivation. Cancer cells engage HIFs to sustain their growth in adverse conditions, thus promoting a cellular reprograming that includes metabolism, proliferation, survival and mobility. HIFs overexpression in human cancer biopsies correlates with high metastasis and mortality. A recent report has elucidated a novel mechanism for HIFs regulation in triple-negative breast cancer. Specifically, the basic helix-loop-helix (bHLH), Sharp-1, serves HIF1α to the proteasome and promotes its O2-indendpendet degradation, counteracting HIF-mediated metastasis. These findings shed light on how HIFs are manipulated during cancer pathogenesis

    p73 Alternative Splicing: Exploring a Biological Role for the C-Terminal Isoforms

    Get PDF
    p73 (encoded by TP73 gene) is a p53 related protein that functions as a transcriptional factor. Similarly to p53, following DNA damage, p73 is stabilized and activated and controls expression of target genes that are involved in the regulation of cycle arrest and apoptosis. However, great complexity to the function of this gene is given by the wide range of its non-tumor-related roles, which include neurological development, ciliogenesis and fertility. From the structural point of view, p73 displays an intricate range of regulations because it can be expressed both as an N-terminally deleted dominant-negative isoforms and as multiple alternatively spliced C-terminal isoforms, which can include or not a sterile alpha motif domain. More is known about the functions of the N-terminal isoforms of p73 (TAp73 and ΔNp73) and their opposing pro- and anti-apoptotic roles, whereas the functional differences of the distinct C-terminal splice forms of p73 are very far away from been defined. Here we summarize the current available literature regarding p73 C-terminal isoforms and the contribution of the sterile alpha motif domain to p73 function, trying to provide an unified view in this complex and sometime controversial field. Current data indicate that the full-length, TAp73α, is the major, if not the exclusive, isoform detected in physiological systems, indicating that detailed spatio-temporal expression analysis and functional studies are highly demanded to support a physiological role for the p73 alternative splicing. With this article, we also aim to emphasize the need to further investigation on the topic, refocusing the attention on what we believe are the most relevant unanswered questions

    Metabolic pathways regulated by TAp73 in response to oxidative stress

    Full text link
    Reactive oxygen species are involved in both physiological and pathological processes including neurodegeneration and cancer. Therefore, cells have developed scavenging mechanisms to maintain redox homeostasis under control. Tumor suppressor genes play a critical role in the regulation of antioxidant genes. Here, we investigated whether the tumor suppressor gene TAp73 is involved in the regulation of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment resulted in numerous biochemical changes in both control and TAp73 knockout (TAp73-/-) mouse embryonic fibroblasts, however the extent of these changes was more pronounced in TAp73-/- cells when compared to control cells. In particular, loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic profile observed reinforces the role of TAp73 as tumor suppressor and indicates that TAp73 exerts this function, at least partially, by regulation of cellular metabolism

    p73 promotes glioblastoma cell invasion by directly activating POSTN (periostin) expression

    Full text link
    Glioblastoma Multiforme is one of the most highly metastatic cancers and constitutes 70% of all gliomas. Despite aggressive treatments these tumours have an exceptionally bad prognosis, mainly due to therapy resistance and tumour recurrence. Here we show that the transcription factor p73 confers an invasive phenotype by directly activating expression of POSTN (periostin, HGNC:16953) in glioblastoma cells. Knock down of endogenous p73 reduces invasiveness and chemo-resistance, and promotes differentiation in vitro. Using chromatin immunoprecipitation and reporter assays we demonstrate that POSTN, an integrin binding protein that has recently been shown to play a major role in metastasis, is a transcriptional target of TAp73. We further show that POSTN overexpression is sufficient to rescue the invasive phenotype of glioblastoma cells after p73 knock down. Additionally, bioinformatics analysis revealed that an intact p73/ POSTN axis, where POSTN and p73 expression is correlated, predicts bad prognosis in several cancer types. Taken together, our results support a novel role of TAp73 in controlling glioblastoma cell invasion by regulating the expression of the matricellular protein POSTN

    miRNAs, “stemness” and skin.

    Full text link
    The epidermis and its appendages provide organisms with protection from the environment, keeping pathogens out and preventing the loss of essential body fluids. To perform both functions, the skin has elaborated a complex differentiation process known as cornification. The skin‟s renewal capacity, responsible for maintaining tissue homeostasis, regenerating hair, and repairing the epidermis after injury, resides in the basal proliferating compartment where epidermal stem cells are located. These cells possess the remarkable capacity to both self-perpetuate and give rise to the differentiating cells that form mature tissues. Recent findings indicate that miRNAs play an essential role in orchestrating the formation of epidermis and skin appendages, in particular at the interface between stemness and differentiation

    The hypoxic tumour microenvironment

    Get PDF
    Cancer progression often benefits from the selective conditions present in the tumour microenvironment, such as the presence of cancer-associated fibroblasts (CAFs), deregulated ECM deposition, expanded vascularisation and repression of the immune response. Generation of a hypoxic environment and activation of its main effector, hypoxiainducible factor-1 (HIF-1), are common features of advanced cancers. In addition to the impact on tumour cell biology, the influence that hypoxia exerts on the surrounding cells represents a critical step in the tumorigenic process. Hypoxia indeed enables a number of events in the tumour microenvironment that lead to the expansion of aggressive clones from heterogeneous tumour cells and promote a lethal phenotype. In this article, we review the most relevant findings describing the influence of hypoxia and the contribution of HIF activation on the major components of the tumour microenvironment, and we summarise their role in cancer development and progression

    Serine and glycine metabolism in cancer

    Get PDF
    Serine and glycine are biosynthetically linked, and together provide the essential precursors for the synthesis of proteins, nucleic acids, and lipids that are crucial to cancer cell growth. Moreover, serine/glycine biosynthesis also affects cellular antioxidative capacity, thus supporting tumour homeostasis. A crucial contribution of serine/glycine to cellular metabolism is through the glycine cleavage system, which refuels one-carbon metabolism; a complex cyclic metabolic network based on chemical reactions of folate compounds. The importance of serine/glycine metabolism is further highlighted by genetic and functional evidence indicating that hyperactivation of the serine/glycine biosynthetic pathway drives oncogenesis. Recent developments in our understanding of these pathways provide novel translational opportunities for drug development, dietary intervention, and biomarker identification of human cancers

    Tissue-specific expression of p73 C-terminal isoforms in mice

    Get PDF
    p73 is a p53 family transcription factor. Due to the presence in the 5′ flanking region of two promoters, there are two N-terminal variants, TAp73, which retains a fully active transactivation domain (TA), and ΔNp73, in which the N terminus is truncated. In addition, extensive 3′ splicing gives rise to at least seven distinctive isoforms; TAp73-selective knockout highlights its role as a regulator of cell death, senescence and tumor suppressor. ΔNp73-selective knockout, on the other hand, highlights anti-apoptotic function of ΔNp73 and its involvement in DNA damage response. In this work, we investigated the expression pattern of murine p73 C-terminal isoforms. By using a RT-PCR approach, we were able to detect mRNAs of all the C-terminal isoforms described in humans. We characterized their in vivo expression profile in mouse organs and in different mouse developmental stages. Finally, we investigated p73 C-terminal expression profile following DNA damage, ex vivo after primary cultures treatment and in vivo after systemic administration of cytotoxic compounds. Overall, our study first elucidates spatio-temporal expression of mouse p73 isoforms and provides novel insights on their expression-switch under triggered conditions

    TAp73 promotes anti-senescence-anabolism not proliferation

    No full text
    TAp73, a member of the p53 family, has been traditionally considered a tumor suppressor gene, but a recent report has claimed that it can promote cellular proliferation. This assumption is based on biochemical evidence of activation of anabolic metabolism, with enhanced pentose phosphate shunt (PPP) and nucleotide biosynthesis. Here, while we confirm that TAp73 expression enhances anabolism, we also substantiate its role in inhibiting proliferation and promoting cell death. Hence, we would like to propose an alternative interpretation of the accumulating data linking p73 to cellular metabolism: we suggest that TAp73 promotes anabolism to counteract cellular senescence rather than to support proliferation
    corecore