103 research outputs found

    Effectively Closed Infinite-Genus Surfaces and the String Coupling

    Full text link
    The class of effectively closed infinite-genus surfaces, defining the completion of the domain of string perturbation theory, can be included in the category OGO_G, which is characterized by the vanishing capacity of the ideal boundary. The cardinality of the maximal set of endpoints is shown to be 2^{\mit N}. The product of the coefficient of the genus-g superstring amplitude in four dimensions by 2g2^g in the g→∞g\to \infty limit is an exponential function of the genus with a base comparable in magnitude to the unified gauge coupling. The value of the string coupling is consistent with the characteristics of configurations which provide a dominant contribution to a finite vacuum amplitude.Comment: TeX, 33 page

    Technical design of the phase I Mu3e experiment

    Full text link
    The Mu3e experiment aims to find or exclude the lepton flavour violating decay at branching fractions above . A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of . We present an overview of all aspects of the technical design and expected performance of the phase I Mu3e detector. The high rate of up to muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements

    3-cocycles, non-associative star-products and the magnetic paradigm of R-flux string vacua

    Get PDF
    We consider the geometric and non-geometric faces of closed string vacua arising by T-duality from principal torus bundles with constant H-flux and pay attention to their double phase space description encompassing all toroidal coordinates, momenta and their dual on equal footing. We construct a star-product algebra on functions in phase space that is manifestly duality invariant and substitutes for canonical quantization. The 3-cocycles of the Abelian group of translations in double phase space are seen to account for non-associativity of the star-product. We also provide alternative cohomological descriptions of non-associativity and draw analogies with the quantization of point-particles in the field of a Dirac monopole or other distributions of magnetic charge. The magnetic field analogue of the R-flux string model is provided by a constant uniform distribution of magnetic charge in space and non-associativity manifests as breaking of angular symmetry. The Poincare vector comes to rescue angular symmetry as well as associativity and also allow for quantization in terms of operators and Hilbert space only in the case of charged particles moving in the field of a single magnetic monopole

    Values of p -adic L -functions and a p -adic Poisson kernel

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46572/1/222_2005_Article_BF01231508.pd

    Operation and performance of the MEG II detector

    Get PDF
    The MEG II experiment, located at the Paul Scherrer Institut (PSI) in Switzerland, is the successor to the MEG experiment, which completed data taking in 2013. MEG II started fully operational data taking in 2021, with the goal of improving the sensitivity of the mu+-&gt; e+gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\upmu <^>+ \rightarrow {\textrm{e}}<^>+ \upgamma \end{document} decay down to similar to 6x10-14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\sim 6 \times 10<^>{-14}\end{document} almost an order of magnitude better than the current limit. In this paper, we describe the operation and performance of the experiment and give a new estimate of its sensitivity versus data acquisition time

    Technical design of the phase I Mu3e experiment

    Get PDF
    The Mu3e experiment aims to find or exclude the lepton flavour violating decay μ→eee\mu \rightarrow eee at branching fractions above 10−1610^{-16}. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of 2⋅10−152\cdot 10^{-15}. We present an overview of all aspects of the technical design and expected performance of the phase~I Mu3e detector. The high rate of up to 10810^{8} muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements.Comment: 114 pages, 185 figures. Submitted to Nuclear Instruments and Methods A. Edited by Frank Meier Aeschbacher This version has many enhancements for better readability and more detail

    A search for μ+→e+γ\mu^+\to e^+\gamma with the first dataset of the MEG II experiment

    Full text link
    The MEG II experiment, based at the Paul Scherrer Institut in Switzerland, reports the result of a search for the decay μ+→e+γ\mu^+\to e^+\gamma from data taken in the first physics run in 2021. No excess of events over the expected background is observed, yielding an upper limit on the branching ratio of B(μ+→e+γ\mu^+\to e^+\gamma) < 7.5×10−137.5 \times 10^{-13} (90% C.L.). The combination of this result and the limit obtained by MEG gives B(μ+→e+γ\mu^+\to e^+\gamma) < 3.1×10−133.1 \times 10^{-13} (90% C.L.), which is the most stringent limit to date. A ten-fold larger sample of data is being collected during the years 2022-2023, and data-taking will continue in the coming years.Comment: 10 pages, 6 figures. To be published in EPJ

    Technical design of the phase I Mu3e experiment

    Get PDF
    The Mu3e experiment aims to find or exclude the lepton flavour violating decay μ→eee at branching fractions above 10−16. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of 2⋅10−15. We present an overview of all aspects of the technical design and expected performance of the phase I Mu3e detector. The high rate of up to 108 muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements

    Operation and performance of MEG II detector

    Full text link
    The MEG II experiment, located at the Paul Scherrer Institut (PSI) in Switzerland, is the successor to the MEG experiment, which completed data taking in 2013. MEG II started fully operational data taking in 2021, with the goal of improving the sensitivity of the mu+ -> e+ gamma decay down to 6e-14 almost an order of magnitude better than the current limit. In this paper, we describe the operation and performance of the experiment and give a new estimate of its sensitivity versus data acquisition time.Comment: 42 pages, 55 figures. Submitted to EPJ
    • …
    corecore