163 research outputs found

    Topological constraints on magnetostatic traps

    Full text link
    We theoretically investigate properties of magnetostatic traps for cold atoms that are subject to externally applied uniform fields. We show that Ioffe Pritchard traps and other stationary points of BB are confined to a two-dimensional curved manifold defined by det(Bi/xj)=0\det(\partial B_i/\partial x_j)=0. We describe how stationary points can be moved over the manifold by applying external uniform fields. The manifold also plays an important role in the behavior of points of zero field. Field zeroes occur in two distinct types, in separate regions of space divided by the manifold. Pairs of zeroes of opposite type can be created or annihilated on the manifold. Finally, we give examples of the manifold for cases of practical interest.Comment: 7 pages, 5 figure

    Klein tunneling and Dirac potentials in trapped ions

    Get PDF
    We propose the quantum simulation of the Dirac equation with potentials, allowing the study of relativistic scaterring and the Klein tunneling. This quantum relativistic effect permits a positive-energy Dirac particle to propagate through a repulsive potential via the population transfer to negative-energy components. We show how to engineer scalar, pseudoscalar, and other potentials in the 1+1 Dirac equation by manipulating two trapped ions. The Dirac spinor is represented by the internal states of one ion, while its position and momentum are described by those of a collective motional mode. The second ion is used to build the desired potentials with high spatial resolution.Comment: 4 pages, 3 figures, minor change

    Fully permanent magnet atom chip for Bose-Einstein condensation

    Full text link
    We describe a self-biased, fully permanent magnet atom chip used to study ultracold atoms and to produce a Bose-Einstein condensate (BEC). The magnetic trap is loaded efficiently by adiabatic transport of a magnetic trap via the application of uniform external fields. Radio frequency spectroscopy is used for in-trap analysis and to determine the temperature of the atomic cloud. The formation of a Bose-Einstein condensate is observed in time of flight images and as a narrow peak appearing in the radio frequency spectrum.Comment: changed title, substantial text modifications, journal reference adde

    A lattice of microtraps for ultracold atoms based on patterned magnetic films

    Full text link
    We have realized a two dimensional permanent magnetic lattice of Ioffe-Pritchard microtraps for ultracold atoms. The lattice is formed by a single 300 nm magnetized layer of FePt, patterned using optical lithography. Our magnetic lattice consists of more than 15000 tightly confining microtraps with a density of 1250 traps/mm2^2. Simple analytical approximations for the magnetic fields produced by the lattice are used to derive relevant trap parameters. We load ultracold atoms into at least 30 lattice sites at a distance of approximately 10 μ\mum from the film surface. The present result is an important first step towards quantum information processing with neutral atoms in magnetic lattice potentials.Comment: 7 pages, 7 figure

    Fabrication of magnetic atom chips based on FePt

    Full text link
    We describe the design and fabrication of novel all-magnetic atom chips for use in ultracold atom trapping. The considerations leading to the choice of nanocrystalline exchange coupled FePt as best material are discussed. Using stray field calculations, we designed patterns that function as magnetic atom traps. These patterns were realized by spark erosion of FePt foil and e-beam lithography of FePt film. A mirror magneto-optical trap (MMOT) was obtained using the stray field of the foil chip.Comment: 5 pages, 5 figure

    Quantum simulation of the Klein paradox with trapped ions

    Get PDF
    We report on quantum simulations of relativistic scattering dynamics using trapped ions. The simulated state of a scattering particle is encoded in both the electronic and vibrational state of an ion, representing the discrete and continuous components of relativistic wave functions. Multiple laser fields and an auxiliary ion simulate the dynamics generated by the Dirac equation in the presence of a scattering potential. Measurement and reconstruction of the particle wave packet enables a frame-by-frame visualization of the scattering processes. By precisely engineering a range of external potentials we are able to simulate text book relativistic scattering experiments and study Klein tunneling in an analogue quantum simulator. We describe extensions to solve problems that are beyond current classical computing capabilities.Comment: 3 figures, accepted for publication in PR

    Quantum Simulation of Quantum Field Theories in Trapped Ions

    Get PDF
    We propose the quantum simulation of a fermion and an antifermion field modes interacting via a bosonic field mode, and present a possible implementation with two trapped ions. This quantum platform allows for the scalable add-up of bosonic and fermionic modes, and represents an avenue towards quantum simulations of quantum field theories in perturbative and nonperturbative regimes.Comment: To be published in Physical Review Letter

    Dynamically controlled toroidal and ring-shaped magnetic traps

    Full text link
    We present traps with toroidal (T2)(T^{2}) and ring-shaped topologies, based on adiabatic potentials for radio-frequency dressed Zeeman states in a ring-shaped magnetic quadrupole field. Simple adjustment of the radio-frequency fields provides versatile possibilities for dynamical parameter tuning, topology change, and controlled potential perturbation. We show how to induce toroidal and poloidal rotations, and demonstrate the feasibility of preparing degenerate quantum gases with reduced dimensionality and periodic boundary conditions. The great level of dynamical and even state dependent control is useful for atom interferometry.Comment: 6 pages, 4 figures. Paragraphs on gravity compensation and expected trap lifetimes adde

    Deterministic entanglement of ions in thermal states of motion

    Full text link
    We give a detailed description of the implementation of a Molmer-Sorensen gate entangling two Ca+ ions using a bichromatic laser beam near-resonant with a quadrupole transition. By amplitude pulse shaping and compensation of AC-Stark shifts we achieve a fast gate operation without compromising the error rate. Subjecting different input states to concatenations of up to 21 individual gate operations reveals Bell state fidelities above 0.80. In principle, the entangling gate does not require ground state cooling of the ions as long as the Lamb-Dicke criterion is fulfilled. We present the first experimental evidence for this claim and create Bell states with a fidelity of 0.974(1) for ions in a thermal state of motion with a mean phonon number of =20(2) in the mode coupling to the ions' internal states.Comment: 18 pages, 9 figures (author name spelling corrected

    Relativistic quantum mechanics with trapped ions

    Get PDF
    We consider the quantum simulation of relativistic quantum mechanics, as described by the Dirac equation and classical potentials, in trapped-ion systems. We concentrate on three problems of growing complexity. First, we study the bidimensional relativistic scattering of single Dirac particles by a linear potential. Furthermore, we explore the case of a Dirac particle in a magnetic field and its topological properties. Finally, we analyze the problem of two Dirac particles that are coupled by a controllable and confining potential. The latter interaction may be useful to study important phenomena as the confinement and asymptotic freedom of quarks.Comment: 17 pages, 4 figure
    corecore