15 research outputs found
Cross-omics: Integrating genomics with metabolomics in clinical diagnostics
Next-generation sequencing and next-generation metabolic screening are, independently, increasingly applied in clinical diagnostics of inborn errors of metabolism (IEM). Integrated into a single bioinformatic method, these two –omics technologies can potentially further improve the diagnostic yield for IEM. Here, we present cross-omics: A method that uses untargeted metabolomics results of patient’s dried blood spots (DBSs), indicated by Z-scores and mapped onto human metabolic pathways, to prioritize potentially affected genes. We demonstrate the optimization of three parameters: (1) maximum distance to the primary reaction of the affected protein, (2) an extension stringency threshold reflecting in how many reactions a metabolite can participate, to be able to extend the metabolite set associated with a certain gene, and (3) a biochemical stringency threshold reflecting paired Z-score thresholds for untargeted metabolomics results. Patients with known IEMs were included. We performed untargeted metabolomics on 168 DBSs of 97 patients with 46 different disease-causing genes, and we simulated their whole-exome sequencing results in silico. We showed that for accurate prioritization of disease-causing genes in IEM, it is essential to take into account not only the primary reaction of the affected protein but a larger network of potentially affected metabolites, multiple steps away from the primary reaction
Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens
Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection
Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study
BackgroundThe PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.MethodsFebrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.FindingsOf 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.InterpretationMost febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.FundingEU Horizon 2020 grant 668303
Genomic investigations of unexplained acute hepatitis in children
Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children
Identification and Quantification of Activities Common to Intensive Care Patients; Development and Validation of a Dual-Accelerometer-Based Algorithm
The aim of this study was to develop and validate an algorithm that can identify the type, frequency, and duration of activities common to intensive care (IC) patients. Ten healthy participants wore two accelerometers on their chest and leg while performing 14 activities clustered into four protocols (i.e., natural, strict, healthcare provider, and bed cycling). A video served as the reference standard, with two raters classifying the type and duration of all activities. This classification was reliable as intraclass correlations were all above 0.76 except for walking in the healthcare provider protocol, (0.29). The data of four participants were used to develop and optimize the algorithm by adjusting body-segment angles and rest-activity-threshold values based on percentage agreement (%Agr) with the reference. The validity of the algorithm was subsequently assessed using the data from the remaining six participants. %Agr of the algorithm versus the reference standard regarding lying, sitting activities, and transitions was 95%, 74%, and 80%, respectively, for all protocols except transitions with the help of a healthcare provider, which was 14–18%. For bed cycling, %Agr was 57–76%. This study demonstrated that the developed algorithm is suitable for identifying and quantifying activities common for intensive care patients. Knowledge on the (in)activity of these patients and their impact will optimize mobilization
Identification and Quantification of Activities Common to Intensive Care Patients; Development and Validation of a Dual-Accelerometer-Based Algorithm
The aim of this study was to develop and validate an algorithm that can identify the type, frequency, and duration of activities common to intensive care (IC) patients. Ten healthy participants wore two accelerometers on their chest and leg while performing 14 activities clustered into four protocols (i.e., natural, strict, healthcare provider, and bed cycling). A video served as the reference standard, with two raters classifying the type and duration of all activities. This classification was reliable as intraclass correlations were all above 0.76 except for walking in the healthcare provider protocol, (0.29). The data of four participants were used to develop and optimize the algorithm by adjusting body-segment angles and rest-activity-threshold values based on percentage agreement (%Agr) with the reference. The validity of the algorithm was subsequently assessed using the data from the remaining six participants. %Agr of the algorithm versus the reference standard regarding lying, sitting activities, and transitions was 95%, 74%, and 80%, respectively, for all protocols except transitions with the help of a healthcare provider, which was 14–18%. For bed cycling, %Agr was 57–76%. This study demonstrated that the developed algorithm is suitable for identifying and quantifying activities common for intensive care patients. Knowledge on the (in)activity of these patients and their impact will optimize mobilization
Respiratory Tract Infection Management and Antibiotic Prescription in Children: A Unique Study Comparing Three Levels of Healthcare in the Netherlands
Background: Respiratory tract infections (RTIs) are common in children with febrile illness visiting the general practitioner (GP) or emergency department. We studied the management of children with fever and RTI at 3 different levels of healthcare in The Netherlands, focusing on antibiotic prescription. Methods: This prospective observational study is part of the Management and Outcome of Febrile children in Europe study. Data were used from face-to-face patient contacts of children with febrile illness in three healthcare settings in Nijmegen, The Netherlands during 2017. These settings were primary (GP), secondary (general hospital) and tertiary care (university hospital). Results: Of 892 cases with RTI without complex comorbidities, overall antibiotic prescription rates were 29% with no differences between the 3 levels of healthcare, leading to an absolute number of 5031 prescriptions per 100,000 children per year in primary care compared with 146 in secondary and tertiary care combined. The prescription rate in otitis media was similar in all levels: 60%. In cases with lower RTI who received nebulizations prescription rates varied between 19% and 55%. Conclusions: Antibiotic prescription rates for RTIs in children were comparable between the 3 levels of healthcare, thus leading to a majority of antibiotics being prescribed in primary care. Relatively high prescription rates for all foci of RTIs were found, which was not in agreement with the national guidelines. Antibiotic stewardship needs improvement at all 3 levels of healthcare. Guidelines to prescribe small spectrum antibiotics for RTIs need to be better implemented in hospital care settings
Cross-Omics: Integrating Genomics with Metabolomics in Clinical Diagnostics
Next-generation sequencing and next-generation metabolic screening are, independently, increasingly applied in clinical diagnostics of inborn errors of metabolism (IEM). Integrated into a single bioinformatic method, these two –omics technologies can potentially further improve the diagnostic yield for IEM. Here, we present cross-omics: a method that uses untargeted metabolomics results of patient’s dried blood spots (DBSs), indicated by Z-scores and mapped onto human metabolic pathways, to prioritize potentially affected genes. We demonstrate the optimization of three parameters: (1) maximum distance to the primary reaction of the affected protein, (2) an extension stringency threshold reflecting in how many reactions a metabolite can participate, to be able to extend the metabolite set associated with a certain gene, and (3) a biochemical stringency threshold reflecting paired Z-score thresholds for untargeted metabolomics results. Patients with known IEMs were included. We performed untargeted metabolomics on 168 DBSs of 97 patients with 46 different disease-causing genes, and we simulated their whole-exome sequencing results in silico. We showed that for accurate prioritization of disease-causing genes in IEM, it is essential to take into account not only the primary reaction of the affected protein but a larger network of potentially affected metabolites, multiple steps away from the primary reaction
Identification of human D lactate dehydrogenase deficiency
Phenotypic and biochemical categorization of humans with detrimental variants can provide valuable information on gene function. We illustrate this with the identification of two different homozygous variants resulting in enzymatic loss-of-function in LDHD, encoding lactate dehydrogenase D, in two unrelated patients with elevated D-lactate urinary excretion and plasma concentrations. We establish the role of LDHD by demonstrating that LDHD loss-of-function in zebrafish results in increased concentrations of D-lactate. D-lactate levels are rescued by wildtype LDHD but not by patients' variant LDHD, confirming these variants' loss-of-function effect. This work provides the first in vivo evidence that LDHD is responsible for human D-lactate metabolism. This broadens the differential diagnosis of D-lactic acidosis, an increasingly recognized complication of short bowel syndrome with unpredictable onset and severity. With the expanding incidence of intestinal resection for disease or obesity, the elucidation of this metabolic pathway may have relevance for those patients with D-lactic acidosis