31 research outputs found

    Skin advanced glycation end product accumulation is poorly refected by glycemic control in type 2 diabetic patients (ZODIAC-9)

    Get PDF
    Background: Glycemic memory can be reflected by tissue accumulation of advanced glycation end products (AGEs). In type 1 diabetes mellitus (T1DM) patients, hemoglobin A1c (HbA1c) levels over various time periods poorly predicted the accumulation of different AGEs in skin biopsies. Our aim was to investigate whether HbA1c assessments can predict the change in skin AGEs during time in type 2 diabetes mellitus (T2DM). Methods: We included 452 T2DM patients participating in a shared-care setting, who are screened annually for HbA1c and diabetic complications. Baseline and follow-up levels of skin AGEs were assessed with a validated noninvasive autofluorescence (AF) method, which is based on the fluorescence characteristics of certain AGEs. Results: Our study population had a mean age of 65 years and 54% were female. After a mean follow-up duration of 3.3 years, linear regression analyses showed weak relationships among different assessments of HbA1c (baseline, maximum, mean, and variance of HbA1c) and skin AF at follow-up. Baseline skin AF and age were predictors of skin AF at follow-up, but diabetes duration, smoking, and creatinine were of less or no predictive value for skin AF at follow-up. Conclusions: In our T2DM population, integrated HbA1c assessments over years poorly predict the change in skin AGE level measured by skin AF. These findings agree with results in patients with T1DM. This suggests either the need for longer exposure to glucose disturbances to change tissue AGEs or other mechanisms, such as oxidative stress, leading to AGE accumulation.</p

    Serum Peroxiredoxin 4:A Marker of Oxidative Stress Associated with Mortality in Type 2 Diabetes (ZODIAC-28)

    Get PDF
    BACKGROUND: Oxidative stress plays an underlying pathophysiologic role in the development of diabetes complications. The aim of this study was to investigate peroxiredoxin 4 (Prx4), a proposed novel biomarker of oxidative stress, and its association with and capability as a biomarker in predicting (cardiovascular) mortality in type 2 diabetes mellitus. METHODS: Prx4 was assessed in baseline serum samples of 1161 type 2 diabetes patients. Cox proportional hazard models were used to evaluate the relationship between Prx4 and (cardiovascular) mortality. Risk prediction capabilities of Prx4 for (cardiovascular) mortality were assessed with Harrell's C statistic, the integrated discrimination improvement and net reclassification improvement. RESULTS: Mean age was 67 and the median diabetes duration was 4.0 years. After a median follow-up period of 5.8 years, 327 patients died; 137 cardiovascular deaths. Prx4 was associated with (cardiovascular) mortality. The Cox proportional hazard models added the variables: Prx4 (model 1); age and gender (model 2), and BMI, creatinine, smoking, diabetes duration, systolic blood pressure, cholesterol-HDL ratio, history of macrovascular complications, and albuminuria (model 3). Hazard ratios (HR) (95% CI) for cardiovascular mortality were 1.93 (1.57 - 2.38), 1.75 (1.39 - 2.20), and 1.63 (1.28 - 2.09) for models 1, 2 and 3, respectively. HR for all-cause mortality were 1.73 (1.50 - 1.99), 1.50 (1.29 - 1.75), and 1.44 (1.23 - 1.67) for models 1, 2 and 3, respectively. Addition of Prx4 to the traditional risk factors slightly improved risk prediction of (cardiovascular) mortality. CONCLUSIONS: Prx4 is independently associated with (cardiovascular) mortality in type 2 diabetes patients. After addition of Prx4 to the traditional risk factors, there was a slightly improvement in risk prediction of (cardiovascular) mortality in this patient group

    Life Expectancy in a Large Cohort of Type 2 Diabetes Patients Treated in Primary Care (ZODIAC-10)

    Get PDF
    Background: Most longitudinal studies showed increased relative mortality in individuals with type 2 diabetes mellitus until now. As a result of major changes in treatment regimes over the past years, with more stringent goals for metabolic control and cardiovascular risk management, improvement of life expectancy should be expected. In our study, we aimed to assess present-day life expectancy of type 2 diabetes patients in an ongoing cohort study. Methodology and Principal Findings: We included 973 primary care type 2 diabetes patients in a prospective cohort study, who were all participating in a shared care project in The Netherlands. Vital status was assessed from May 2001 till May 2007. Main outcome measurement was life expectancy assessed by transforming actual survival time to standardised survival time allowing adjustment for the baseline mortality rate of the general population. At baseline, mean age was 66 years, mean HbA(1c) 7.0%. During a median follow-up of 5.4 years, 165 patients died (78 from cardiovascular causes), and 17 patients were lost to follow-up. There were no differences in life expectancy in subjects with type 2 diabetes compared to life expectancy in the general population. In multivariate Cox regression analyses, concentrating on the endpoints 'all-cause' and cardiovascular mortality, a history of cardiovascular disease: hazard ratio (HR) 1.71 (95% confidence interval (CI) 1.23-2.37), and HR 2.59 (95% CI 1.56-4.28); and albuminuria: HR 1.72 (95% CI 1.26-2.35), and HR 1.83 (95% CI 1.17-2.89), respectively, were significant predictors, whereas smoking, HbA(1c), systolic blood pressure and diabetes duration were not. Conclusions: This study shows a normal life expectancy in a cohort of subjects with type 2 diabetes patients in primary care when compared to the general population. A history of cardiovascular disease and albuminuria, however, increased the risk of a reduction of life expectancy. These results show that, in a shared care environment, a normal life expectancy is achievable in type 2 diabetes patients

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study

    Get PDF
    BackgroundThe PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.MethodsFebrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.FindingsOf 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.InterpretationMost febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.FundingEU Horizon 2020 grant 668303

    Stroke management in a Swiss community hospital – in close collaboration with a stroke centre

    No full text
    BACKGROUND Despite the universal recognition that stroke is a major burden of public health in developed countries, little is known concerning its epidemiology and care outside of stroke centres. The objective of our study was to provide information concerning risk factors for stroke, stroke management and quality of care in a community hospital in Switzerland. METHODS Retrospective observational in-hospital study of adult stroke patients treated in a community hospital in Switzerland in collaboration with a nearby stroke centre. Patients were identified by the corresponding ICD-10 codes from July 2017 to December 2018. RESULTS We included 261 patients with a median age of 78 years (interquartile range [IQR] 68–85). Sixty-four percent (166) had ischaemic strokes, 18% (46) transient ischaemic attacks and 19% (49) intracranial bleeding. The most frequent risk factors were arterial hypertension in 195 (75%) patients, dyslipidaemia in 124 (48%) patients and overweight/obesity in 102 (39%). Dyslipidaemia and atrial fibrillation were undiagnosed at admission in 47 (38%) and 16 (27%) patients, respectively. Ninety-one (37%) patients with an out-of-hospital stroke presented within 4.5 hours after symptom onset. Intravenous thrombolysis was initiated in 27 patients (49% of the out-of-hospital ischaemic strokes presenting within 4.5 hours) and the median door-to-needle time was 55 minutes (IQR 40–67) and within 60 minutes in 16 (59%) patients. The most frequent poststroke complications were aspiration pneumonia in 22 (8%) followed by urinary tract infection in 14 (5%). The referral rate to a stroke centre or neurosurgical unit was 18%. CONCLUSION Our findings support further education of the population in recognition of stroke symptoms and assessment of cardiovascular risk factors according to guidelines. Telemedical cooperation with a local stroke centre can result in adequate quality of care in these patients

    Skin autofluorescence as a measure of advanced glycation endproduct deposition:a novel risk marker in chronic kidney disease

    No full text
    Purpose of review Skin autofluorescence (SAF) is a new method to noninvasively assess accumulation of advanced glycation endproducts (AGEs) in a tissue with low turnover. Recent progress in the clinical application of SAF as a risk marker for diabetic nephropathy as well as cardiovascular disease in nondiabetic end-stage kidney disease, less advanced chronic kidney disease, and renal transplant recipients is reviewed. Recent findings Experimental studies highlight the fundamental role of the interaction of AGEs with the receptor for AGEs (RAGEs), also called the AGE-RAGE axis, in the pathogenesis of vascular and chronic kidney disease. SAF predicts (cardiovascular) mortality in renal failure and also chronic renal transplant dysfunction. Long-term follow-up results from the Diabetes Control and Complications Trial and UK Prospective Diabetes Study suggest that AGE accumulation is a key carrier of metabolic memory and oxidative stress. Short-term intervention studies in diabetic nephropathy with thiamine, benfotiamine and angiotensin-receptor blockers aimed at reducing AGE formation have reported mixed results. Summary SAF is a noninvasive marker of AGE accumulation in a tissue with low turnover, and thereby of metabolic memory and oxidative stress. SAF independently predicts cardiovascular and renal risk in diabetes, as well as in chronic kidney disease. Further long-term studies are required to assess the potential benefits of interventions to reduce AGE accumulation
    corecore