147 research outputs found

    Concomitant Crystallization in Propylene/Ethylene Random Copolymer with Strong Flow at Elevated Temperatures

    Get PDF
    Flow-induced crystallization of α- and γ-phases was studied for a propylene/ethylene random copolymer with 3.4 mol % ethylene at two high temperatures of 132 and 142 °C by combining a pressure-driven slit flow device with real-time synchrotron wide-angle X-ray diffraction. At 132 °C, it was found that both α- and γ-phases were generated at shear stresses ranging from 0.091 to 0.110 MPa and that the γ-phase always appeared later than the α-phase. However, for 142 °C and the same stresses, only the α-phase formed. Only upon cooling the partially crystallized copolymer did the γ-phase emerge. The lack of γ-crystals obtained at 142 °C is opposite to the behavior reported for quiescent crystallization under pressure, for which increasing temperature results in more and even pure γ-crystals. In the current study, the absence of γ-phase at 142 °C is tentatively associated with lack of epitaxial nucleation on α-lamellae and to relatively low growth rate of γ-crystals

    Anomalous Temperature Dependence of Isotactic Polypropylene \uce\ub1-on-\uce\ub2 Cross-Nucleation Kinetics

    Get PDF
    A particular kind of heterogeneous nucleation, i.e., cross-nucleation, is sometimes observed in polymorphic substances, when a new crystal structure nucleates on the surface of a crystal of a different modification. Here we show a unique and apparently incongruous nucleation behavior in polymorphic isotactic polypropylene (i-PP). The rate of cross-nucleation of the monoclinic \uce\ub1-phase on the trigonal \uce\ub2-phase crystals increases with increasing temperature, in the vicinity of the \uce\ub1-crystals melting point. This behavior is contrary to that of the heterogeneous nucleation kinetics of the same crystal on various solid substrates, and also to the previously reported cases of cross-nucleation rate of other polymorphic systems, both exhibiting the expected decrease with temperature in the same range of undercoolings. i-PP \uce\ub1-on-\uce\ub2 cross-nucleation apparently eludes the nucleation theory. The results are explained as a manifestation of a kinetic competition between \uce\ub1-on-\uce\ub2 cross-nucleation and growth of \uce\ub2-crystalline seeds, and finally reconciled with the current understanding of nucleation. These new findings indicate that further theoretical efforts are needed to include the cross-nucleation phenomenon in the framework of a comprehensive understanding of polymorphic crystallization. Incidentally, this study highlights the intrinsic limits of the, industrially desirable, promotion of \uce\ub2-phase formation in polypropylene

    Cross-Nucleation between Polymorphs: Quantitative Modeling of Kinetics and Morphology

    Get PDF
    Cross-nucleation is defined as the nucleation of one polymorph on the surface of another polymorph of the same substance. Although the description of this particular form of heterogeneous nucleation is mainly phenomenological, recently dedicated quantitative studies are performed on several systems. In this work we propose a model framework that captures the phenomenon of cross-nucleation for a spherulitic seed-surface geometry, as well as the kinetic competition between the seed growth and the cross-nucleus formation, by the introduction of a tangential growth rate of the daughter polymorph. Regardless of the growth rate of the parent spherulite, this model describes the experimental data up to and including the final amount of cross-nuclei on its periphery, solely based on one parameter, the cross-nucleation rate. Furthermore, a strong temperature dependency of the kinetic competition between concomitantly growing \u3b1- and \u3b2-phase isotactic polypropylene is observed and related to the previously reported anomalous behavior of this cross-nucleating system

    Transient interfacial tension and dilatational rheology of diffuse polymer-polymer interfaces

    Get PDF
    We demonstrate the influence of molecular weight and molecular weightasymmetry across an interface on the transient behavior of the interfacial tension. The interfacial tension was measured as a function of time for a range of polymer combinations with a broadrange of interfacial properties using a pendant/ sessile drop apparatus. The results show that neglecting mutual solubility, assumed to be a reasonable approximation in many cases, very often does not sustain. Instead, a diffuse interface layer develops in time with a corresponding transient interfacial tension. Depending on the specific combination of polymers, the transient interfacial tension is found to increase or decrease with time. The results are interpreted in terms of a recently proposed model\cite{Shi_etal2004}, giving relativecharacteristic diffusion time scales in terms of molecular weight, molecular weight distribution and viscosities. However, the time scales obtained from this theoretical approach do not give a conclusive trend. Using oscillatory dilatational interfacial experiments the viscoelastic behavior of these diffusive interfaces is demonstrated. The time evolution of the interfacial tension and thedilatational elasticity show the same trend aspredicted by the theory of diffuse interfaces, supporting the idea that the polymer combinations under consideration indeed form diffuse interfaces. The dilatational elasticity and the dilatationalviscosity show a frequency dependency that is described qualitatively by a simple Fickian diffusion model and quantitatively by a Maxwell model. The characteristic diffusion times provided by the lattershow that the systems with thick interfaces (tens of micrometers and more) can be considered as slowdiffusive systems while the systems with thinner interfaces (a few micrometers and less) can be considered as fast diffusive systems

    Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family

    Get PDF
    Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes

    Stability analysis of injection molding flows

    Get PDF
    We numerically investigate the stability problem of the injection molding process. It was indicated by Bulters and Schepens Bulters and Schepens 2000 that surface defects of injection molded products may be attributed to a flow instability near the free surface during the filling stage of the mold. We examine the stability of this flow using the extended Pom–Pom constitutive equations. The model allows for controlling the degree of strain hardening of the fluids without affecting the shear behavior considerably. To study the linear stability characteristics of the injection molding process we use a transient finite element algorithm that is able to efficiently handle time dependent viscoelastic flow problems and includes a free surface description to take perturbations of the computational domain into account. It is shown that the fountain flow, which is a model flow for the injection molding process, is subject to a viscoelastic instability. If the various rheologies are compared, we observe that the onset of unstable flow can be delayed by increasing the degree of strain hardening of the fluid by increasing the number of arms in the Pom–Pom model. The most unstable disturbance which is obtained after exponential growth is a swirling flow near the fountain flow surface which is consistent with the experimental findings. © 2004 The Society of Rheology. DOI: 10.1122/1.1753276 I

    The Catalytic Mechanism of Electron-Bifurcating Electron Transfer Flavoproteins (ETFs) Involves an Intermediary Complex with NAD\u3csup\u3e+\u3c/sup\u3e

    Get PDF
    Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum. The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD+, we propose a catalytic cycle involving formation of an intermediary NAD+-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP+ oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD+, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family
    corecore