9 research outputs found

    NASTRAN analysis of an air storage piping system

    Get PDF
    The application of NASTRAN to a complex piping design evaluation problem is summarized. Emphasis is placed on structural modeling aspects, problems encountered in modeling and analyzing curved pipe sections, principal results, and relative merits of using NASTRAN as a pipe analysis and design tool. In addition, the piping and manifolding system was analyzed with SNAP (Structural Network Analysis Program). The parallel SNAP study provides a basis for limited comparisons between NASTRAN and SNAP as to solution agreement and computer execution time and costs

    Nine percent nickel steel heavy forging weld repair study

    Get PDF
    The feasibility of making weld repairs on heavy section 9% nickel steel forgings such as those being manufactured for the National Transonic Facility fan disk and fan drive shaft components was evaluated. Results indicate that 9% nickel steel in heavy forgings has very good weldability characteristics for the particular weld rod and weld procedures used. A comparison of data for known similar work is included

    Marine fish may be biochemically constrained from inhabiting the deepest ocean depths

    Get PDF
    No fish have been found in the deepest 25% of the ocean (8,400-11,000 m). This apparent absence has been attributed to hydrostatic pressure, although direct evidence is wanting because of the lack of deepest-living species to study. The common osmolyte trimethylamine N-oxide (TMAO) stabilizes proteins against pressure and increases with depth, going from 40 to 261 mmol/kg in teleost fishes from 0 to 4,850 m. TMAO accumulation with depth results in increasing internal osmolality (typically 350 mOsmol/kg in shallow species compared with seawater\u27s 1,100 mOsmol/kg). Preliminary extrapolation of osmolalities of predicted isosmotic state at 8,000-8,500 m may indicate a possible physiological limit, as greater depths would require reversal of osmotic gradients and, thus, osmoregulatory systems. We tested this prediction by capturing five of the second-deepest known fish, the hadal snailfish (Notoliparis kermadecensis; Liparidae), from 7,000 m in the Kermadec Trench. We found theirmuscles to have a TMAOcontent of 386 ± 18 mmol/kg and osmolality of 991 ± 22 mOsmol/kg. These data fit previous extrapolations and, combined with new osmolalities from bathyal and abyssal fishes, predict isosmotic state at 8,200 m. This is previously unidentified evidence that biochemistry could constrain the depth of a large, complex taxonomic group
    corecore