67 research outputs found
Information Loss and Anti-Aliasing Filters in Multirate Systems
This work investigates the information loss in a decimation system, i.e., in
a downsampler preceded by an anti-aliasing filter. It is shown that, without a
specific signal model in mind, the anti-aliasing filter cannot reduce
information loss, while, e.g., for a simple signal-plus-noise model it can. For
the Gaussian case, the optimal anti-aliasing filter is shown to coincide with
the one obtained from energetic considerations. For a non-Gaussian signal
corrupted by Gaussian noise, the Gaussian assumption yields an upper bound on
the information loss, justifying filter design principles based on second-order
statistics from an information-theoretic point-of-view.Comment: 12 pages; a shorter version of this paper was published at the 2014
International Zurich Seminar on Communication
Relative Information Loss in the PCA
In this work we analyze principle component analysis (PCA) as a deterministic
input-output system. We show that the relative information loss induced by
reducing the dimensionality of the data after performing the PCA is the same as
in dimensionality reduction without PCA. Finally, we analyze the case where the
PCA uses the sample covariance matrix to compute the rotation. If the rotation
matrix is not available at the output, we show that an infinite amount of
information is lost. The relative information loss is shown to decrease with
increasing sample size.Comment: 9 pages, 4 figure; extended version of a paper accepted for
publicatio
Optimal Kullback-Leibler Aggregation via Information Bottleneck
In this paper, we present a method for reducing a regular, discrete-time
Markov chain (DTMC) to another DTMC with a given, typically much smaller number
of states. The cost of reduction is defined as the Kullback-Leibler divergence
rate between a projection of the original process through a partition function
and a DTMC on the correspondingly partitioned state space. Finding the reduced
model with minimal cost is computationally expensive, as it requires an
exhaustive search among all state space partitions, and an exact evaluation of
the reduction cost for each candidate partition. Our approach deals with the
latter problem by minimizing an upper bound on the reduction cost instead of
minimizing the exact cost; The proposed upper bound is easy to compute and it
is tight if the original chain is lumpable with respect to the partition. Then,
we express the problem in the form of information bottleneck optimization, and
propose using the agglomerative information bottleneck algorithm for searching
a sub-optimal partition greedily, rather than exhaustively. The theory is
illustrated with examples and one application scenario in the context of
modeling bio-molecular interactions.Comment: 13 pages, 4 figure
Anthropomorphic Coding of Speech and Audio: A Model Inversion Approach
Auditory modeling is a well-established methodology that provides insight into human perception and that facilitates the extraction of signal features that are most relevant to the listener. The aim of this paper is to provide a tutorial on perceptual speech and audio coding using an invertible auditory model. In this approach, the audio signal is converted into an auditory representation using an invertible auditory model. The auditory representation is quantized and coded. Upon decoding, it is then transformed back into the acoustic domain. This transformation converts a complex distortion criterion into a simple one, thus facilitating quantization with low complexity. We briefly review past work on auditory models and describe in more detail the components of our invertible model and its inversion procedure, that is, the method to reconstruct the signal from the output of the auditory model. We summarize attempts to use the auditory representation for low-bit-rate coding. Our approach also allows the exploitation of the inherent redundancy of the human auditory system for the purpose of multiple description (joint source-channel) coding
Application of the Evidence Procedure to the Estimation of Wireless Channels
We address the application of the Bayesian evidence procedure to the estimation of wireless channels. The proposed scheme is based on relevance vector machines (RVM) originally proposed by M. Tipping. RVMs allow to estimate channel parameters as well as to assess the number of multipath components constituting the channel within the Bayesian framework by locally maximizing the evidence integral. We show that, in the case of channel sounding using pulse-compression techniques, it is possible to cast the channel model as a general linear model, thus allowing RVM methods to be applied. We extend the original RVM algorithm to the multiple-observation/multiple-sensor scenario by proposing a new graphical model to represent multipath components. Through the analysis of the evidence procedure we develop a thresholding algorithm that is used in estimating the number of components. We also discuss the relationship of the evidence procedure to the standard minimum description length (MDL) criterion. We show that the maximum of the evidence corresponds to the minimum of the MDL criterion. The applicability of the proposed scheme is demonstrated with synthetic as well as real-world channel measurements, and a performance increase over the conventional MDL criterion applied to maximum-likelihood estimates of the channel parameters is observed
- …