219 research outputs found

    Horse males became over-represented in archaeological assemblages during the Bronze Age

    Get PDF
    International audienceHighlights 1. We generated low-coverage DNA sequence data for 19 new Upper Paleolithic horses from Goyet and Trou Magritte, Belgium. 2. We determined their molecular sex together with that of 249 previously-published horse archaeological remains spanning the last 40,000 years across Eurasia. 3. Osseous archaeological and paleontological assemblages showed balanced male:female sex ratios up until ~3,900 years cal. BP. 4. Archeological assemblages post-3,900 years cal. BP became strongly biased towards males (approximately ~79%), underlining a strong shift in animal gender representation that occurred during the Bronze Age

    Dental microwear as a behavioral proxy for distinguishing between canids at the Upper Paleolithic (Gravettian) site of Predmostí, Czech Republic

    Get PDF
    Morphological and genetic evidence put dog domestication during the Paleolithic, sometime between 40,000 and 15,000 years ago, with identification of the earliest dogs debated. We predict that these earliest dogs (referred to herein as protodogs), while potentially difficult to distinguish morphologically from wolves, experienced behavioral shifts, including changes in diet. Specifically, protodogs may have consumed more bone and other less desirable scraps within human settlement areas. Here we apply Dental Microwear Texture Analysis (DMTA) to canids from the Gravettian site of P�redmostí (approx. 28,500 BP), which were previously assigned to the Paleolithic dog or Pleistocene wolf morphotypes. We test whether these groups separate out significantly by diet- related variation in microwear patterning. Results are consistent with differences in dietary breadth, with the Paleolithic dog morphotype showing evidence of greater durophagy than those assigned to the wolf morphotype. This supports the presence of two morphologically and behaviorally distinct canid types at this middle Upper Paleolithic site. Our primary goal here was to test whether these two morphotypes expressed notable differences in dietary behavior. However, in the context of a major Gravettian settlement, this may also support evidence of early stage dog domestication. Dental microwear is a behavioral signal that may appear generations before morphological changes are established in a population. It shows promise for distinguishing protodogs from wolves in the Pleistocene and domesticated dogs from wolves elsewhere in the archaeological record

    Endobronchial Lipomas: Rare Benign Lung Tumors, Two Case Reports

    Get PDF
    Abstract:Endobronchial lipoma is a rare benign lung tumor. Here we present two cases. One case is the first report of the association of and endobronchial lipoma with a hilar lipoma. We discuss the epidemiology, difficulties in establishing the diagnosis, and the management of this rare condition

    Ancient RNA from Late Pleistocene permafrost and historical canids shows tissue-specific transcriptome survival

    Get PDF
    While sequencing ancient DNA (aDNA) from archaeological material is now commonplace, very few attempts to sequence ancient transcriptomes have been made, even from typically stable deposition environments such as permafrost. This is presumably due to assumptions that RNA completely degrades relatively quickly, particularly when dealing with autolytic, nuclease-rich mammalian tissues. However, given the recent successes in sequencing ancient RNA (aRNA) from various sources including plants and animals, we suspect that these assumptions may be incorrect or exaggerated. To challenge the underlying dogma, we generated shotgun RNA data from sources that might normally be dismissed for such study. Here, we present aRNA data generated from two historical wolf skins, and permafrost-preserved liver tissue of a 14,300-year-old Pleistocene canid. Not only is the latter the oldest RNA ever to be sequenced, but it also shows evidence of biologically relevant tissue specificity and close similarity to equivalent data derived from modern-day control tissue. Other hallmarks of RNA sequencing (RNA-seq) data such as exon-exon junction presence and high endogenous ribosomal RNA (rRNA) content confirms our data's authenticity. By performing independent technical library replicates using two high-throughput sequencing platforms, we show not only that aRNA can survive for extended periods in mammalian tissues but also that it has potential for tissue identification. aRNA also has possible further potential, such as identifying in vivo genome activity and adaptation, when sequenced using this technology

    Pre-dive Whole-Body Vibration Better Reduces Decompression-Induced Vascular Gas Emboli than Oxygenation or a Combination of Both

    Get PDF
    Purpose: Since non-provocative dive profiles are no guarantor of protection against decompression sickness, novel means including pre-dive “preconditioning” interventions, are proposed for its prevention. This study investigated and compared the effect of pre-dive oxygenation, pre-dive whole body vibration or a combination of both on post-dive bubble formation. Methods: Six healthy volunteers performed 6 no-decompression dives each, to a depth of 33 mfw for 20 min (3 control dives without preconditioning and 1 of each preconditioning protocol) with a minimum interval of 1 week between each dive. Post-dive bubbles were counted in the precordium by two-dimensional echocardiography, 30 and 90 min after the dive, with and without knee flexing. Each diver served as his own control. Results: Vascular gas emboli (VGE) were systematically observed before and after knee flexing at each post-dive measurement. Compared to the control dives, we observed a decrease in VGE count of 23.8 ± 7.4% after oxygen breathing (p < 0.05), 84.1 ± 5.6% after vibration (p < 0.001), and 55.1 ± 9.6% after vibration combined with oxygen (p < 0.001). The difference between all preconditioning methods was statistically significant. Conclusions: The precise mechanism that induces the decrease in post-dive VGE and thus makes the diver more resistant to decompression stress is still not known. However, it seems that a pre-dive mechanical reduction of existing gas nuclei might best explain the beneficial effects of this strategy. The apparent non-synergic effect of oxygen and vibration has probably to be understood because of different mechanisms involved

    Venous gas embolism as a predictive tool for improving CNS decompression safety

    Get PDF
    A key process in the pathophysiological steps leading to decompression sickness (DCS) is the formation of inert gas bubbles. The adverse effects of decompression are still not fully understood, but it seems reasonable to suggest that the formation of venous gas emboli (VGE) and their effects on the endothelium may be the central mechanism leading to central nervous system (CNS) damage. Hence, VGE might also have impact on the long-term health effects of diving. In the present review, we highlight the findings from our laboratory related to the hypothesis that VGE formation is the main mechanism behind serious decompression injuries. In recent studies, we have determined the impact of VGE on endothelial function in both laboratory animals and in humans. We observed that the damage to the endothelium due to VGE was dose dependent, and that the amount of VGE can be affected both by aerobic exercise and exogenous nitric oxide (NO) intervention prior to a dive. We observed that NO reduced VGE during decompression, and pharmacological blocking of NO production increased VGE formation following a dive. The importance of micro-nuclei for the formation of VGE and how it can be possible to manipulate the formation of VGE are discussed together with the effects of VGE on the organism. In the last part of the review we introduce our thoughts for the future, and how the enigma of DCS should be approached

    European position paper on the management of patients with patent foramen ovale. General approach and left circulation thromboembolism

    Get PDF
    The presence of a patent foramen ovale (PFO) is implicated in the pathogenesis of a number of medical conditions; however, the subject remains controversial and no official statements have been published. This interdisciplinary paper, prepared with involvement of eight European scientific societies, aims to review the available trial evidence and to define the principles needed to guide decision making in patients with PFO. In order to guarantee a strict process, position statements were developed with the use of a modified grading of recommendations assessment, development, and evaluation (GRADE) methodology. A critical qualitative and quantitative evaluation of diagnostic and therapeutic procedures was performed, including assessment of the risk/benefit ratio. The level of evidence and the strength of the position statements of particular management options were weighed and graded according to predefined scales. Despite being based often on limited and non-randomised data, while waiting for more conclusive evidence, it was possible to conclude on a number of position statements regarding a rational general approach to PFO management and to specific considerations regarding left circulation thromboembolism. For some therapeutic aspects, it was possible to express stricter position statements based on randomised trials. This position paper provides the first largely shared, interdisciplinary approach for a rational PFO management based on the best available evidence

    Induction of Tachykinin Production in Airway Epithelia in Response to Viral Infection

    Get PDF
    The tachykinins are implicated in neurogenic inflammation and the neuropeptide substance P in particular has been shown to be a proinflammatory mediator. A role for the tachykinins in host response to lung challenge has been previously demonstrated but has been focused predominantly on the release of the tachykinins from nerves innervating the lung. We have previously demonstrated the most dramatic phenotype described for the substance P encoding gene preprotachykinin-A (PPT-A) to date in controlling the host immune response to the murine gammaherpesvirus 68, in the lung.In this study we have utilised transgenic mice engineered to co-ordinately express the beta-galactosidase marker gene along with PPT-A to facilitate the tracking of PPT-A expression. Using a combination of these mice and conventional immunohistology we now demonstrate that PPT-A gene expression and substance P peptide are induced in cells of the respiratory tract including tracheal, bronchiolar and alveolar epithelial cells and macrophages after viral infection. This induction was observed 24h post infection, prior to observable inflammation and the expression of pro-inflammatory chemokines in this model. Induced expression of the PPT-A gene and peptide persisted in the lower respiratory tract through day 7 post infection.Non-neuronal PPT-A expression early after infection may have important clinical implications for the progression or management of lung disease or infection aside from the well characterised later involvement of the tachykinins during the inflammatory response
    corecore