14 research outputs found

    Belle II Vertex Detector Performance

    Get PDF
    The Belle II experiment at the SuperKEKB accelerator (KEK, Tsukuba, Japan) collected its first e+e− collision data in the spring 2019. The aim of accumulating a 50 times larger data sample than Belle at KEKB, a first generation B-Factory, presents substantial challenges to both the collider and the detector, requiring not only state-of-the-art hardware, but also modern software algorithms for tracking and alignment. The broad physics program requires excellent performance of the vertex detector, which is composed of two layers of DEPFET pixels and four layers of double sided-strip sensors. In this contribution, an overview of the vertex detector of Belle II and our methods to ensure its optimal performance, are described, and the first results and experiences from the first physics run are presented

    Operational experience and commissioning of the Belle II vertex detector

    Get PDF

    Personalized peptide-based vaccination for treatment of colorectal cancer: rational and progress

    Get PDF
    Colorectal cancer (CRC) is one of the most common cancers globally and is associated with a high rate of morbidity and mortality. A large proportion of patients with early stage CRC who undergo conventional treatments develop local recurrence or distant metastasis and in this group of advanced disease, the survival rate is low. Furthermore there is often a poor response and/or toxicity associated with chemotherapy and chemo-resistance may limit continuing conventional treatment alone. Choosing novel and targeted therapeutic approaches based on clinicopathological and molecular features of tumors in combination with conventional therapeutic approach could be used to eradicate residual micrometastasis and therefore improve patient prognosis and also be used preventively. Peptide-based vaccination therapy is one class of cancer treatment that could be used to induce tumor-specific immune responses, through the recognition of specific antigen-derived peptides in tumor cells, and this has emerged as a promising anti-cancer therapeutic strategy. The aim of this review was to summarize the main findings of recent studies in exciting field of peptide-based vaccination therapy in CRC patients as a novel therapeutic approach in treatment of CRC

    A 10MS/s 8-bit charge-redistribution ADC for hybrid pixel applications in 65m CMOS

    No full text
    The design and measurement results of an 8-bit SAR ADC, based on a charge-redistribution DAC, are presented. This ADC is characterized by superior power efficiency and small area, realized by employing a lateral metal–metal capacitor array and a dynamic two-stage comparator. To avoid the need for a highspeed clock and its associated power consumption, an asynchronous logic was implemented in a logic control cell. A test chip has been developed in a 65 nm CMOS technology, including eight ADC channels with different layout flavors of the capacitor array, a transimpedance amplifier as a signal input structure, a serializer, and a custom-made LVDS driver for data transmission. The integral (INL) and differential (DNL) nonlinearities are measured below 0.5 LSB and 0.8 LSB, respectively, for the best channel operating at a sampling frequency of 10 MS/s. The area occupies 40 μm 70 μm for one ADC channel. The power consumption is estimated as 4 μW at 1 MS/s and 38 μW at 10 MS/s with a supply rail of 1.2 V. These excellent performance features and the natural radiation hardness of the design, due to the thin gate oxide thickness of transistors, are very interesting for front-end electronics ICs of future hybrid-pixel detector systems

    DEPFET pixel detector in the Belle II experiment

    No full text
    The Belle II experiment will run with a reduced beam asymmetry and a factor of 40 higher instantaneous luminosity compared to the Belle experiment. To cope with this and to be able to perform high precision vertex measurements for charge conjugation parity violating processes, a pixel detector based on DEPFET technology will be installed in the center of Belle II. Its basic properties and the DAQ chain are presented in this article

    Belle II pixel detector: Performance of final DEPFET modules

    No full text
    A DEpleted P-channel Field Effect Transistor (DEPFET) based pixel detector was developed for the Belle II VerteX Detector (VXD). It is designed to achieve a good impact parameter resolution better than 15μm at the very high luminosity conditions of this experiment. In the first half of 2018 four final production modules have been deployed in the commissioning run of the detector and their performance is discussed

    Operational experience and commissioning of theBelle II vertex detector

    Get PDF
    The construction of the new accelerator at the Super Flavor Factory in Tsukuba, Japan, has been finalized and the commissioning of its detector (Belle II) has started. This new e+e− machine (SuperKEKB) will deliver an instantaneous luminosity of 8×1035 cm−2s−1, which is 40 times higher than the world record set by KEKB. In order to be able to fully exploit the increased number of events and provide high precision measurements of the decay vertex of the B meson systems in such a harsh environment, the Belle II detector will include a new 6 layer silicon vertex detector. Close to the beam pipe, 2 pixel and 4 double-sided strip detector layers will be installed. During its first data taking period in 2018, the inner volume of the Belle II detector was only partially equipped with the final vertex detector technologies. The remaining volume was covered with dedicated radiation monitors, collectively called BEAST II, in order to investigate the particle and synchrotron radiation backgrounds near the interaction point. In this note, the milestones of the commissioning of the Belle II vertex detector and BEAST II are reviewed and the detector performance and selected background measurements will be presented
    corecore