95 research outputs found

    Strain Rate and Orientation Dependencies of the Strength of Single Crystalline Copper under Compression

    Get PDF
    Molecular dynamics (MD) simulations are used to model the compression under uniaxial strain of copper single crystals of different orientations at various temperatures and strain rates. Uniaxial strain is used because of the close resemblance of the resulting stress state with the one behind a shock front, while allowing a control of parameters such as strain rate and temperature to better understand the behavior under complex dynamic shock conditions. Our simulations show that for most orientations, the yield strength of the sample is increased with increasing strain rate. This yield strength is also dependent on the orientation of the sample, but less dependent on temperature. We find three regimes for the atomistic behavior around the yield: homogeneous dislocation nucleation, appearance of disordered atoms followed by dislocation nucleation, and amorphization. Finally, we show that a criterion solely based on a critical resolved shear and normal stress is insufficient at these strain rates to determine slip on a system

    Shock wave loading and spallation of copper bicrystals with asymmetric Σ3〈110〉tilt grain boundaries

    Get PDF
    We investigate the effect of asymmetric grain boundaries (GBs) on the shock response of Cu bicrystals with molecular dynamics simulations. We choose a representative Σ3〈110〉tilt GB type, (110)_1/(114)_2, and a grain size of about 15 nm. The shock loading directions lie on the GB plane and are along [001] and [221] for the two constituent crystals. The bicrystal is characterized in terms of local structure, shear strain, displacement, stress and temperature during shock compression, and subsequent release and tension. The shock response of the bicrystal manifests pronounced deviation from planar loading as well as strong stress and strain concentrations, due to GBs and the strong anisotropy in elasticity and plasticity. We explore incipient to full spallation. Voids nucleate either at GBs or on GB-initiated shear planes, and the spall damage also depends on grain orientation

    Molecular Dynamics Simulations of Detonation Instability

    Full text link
    After making modifications to the Reactive Empirical Bond Order potential for Molecular Dynamics (MD) of Brenner et al. in order to make the model behave in a more conventional manner, we discover that the new model exhibits detonation instability, a first for MD. The instability is analyzed in terms of the accepted theory.Comment: 7 pages, 6 figures. Submitted to Phys. Rev. E Minor edits. Removed parenthetical statement about P^\nu from conclusion

    Anisotropic shock response of columnar nanocrystalline Cu

    Get PDF
    We perform molecular dynamics simulations to investigate the shock response of idealized hexagonal columnar nanocrystalline Cu, including plasticity, local shear, and spall damage during dynamic compression, release, and tension. Shock loading (one-dimensional strain) is applied along three principal directions of the columnar Cu sample, one longitudinal (along the column axis) and two transverse directions, exhibiting a strong anisotropy in the response to shock loading and release. Grain boundaries (GBs) serve as the nucleation sites for crystal plasticity and voids, due to the GB weakening effect as well as stress and shear concentrations. Stress gradients induce GB sliding which is pronounced for the transverse loading. The flow stress and GB sliding are the lowest but the spall strength is the highest, for longitudinal loading. For the grain size and loading conditions explored, void nucleation occurs at the peak shear deformation sites (GBs, and particularly triple junctions); spall damage is entirely intergranular for the transverse loading, while it may extend into grain interiors for the longitudinal loading. Crystal plasticity assists the void growth at the early stage but the growth is mainly achieved via GB separation at later stages for the transverse loading. Our simulations reveal such deformation mechanisms as GB sliding, stress, and shear concentration, GB-initiated crystal plasticity, and GB separation in nanocrystalline solids under shock wave loading

    Large-scale molecular dynamics simulations of shock induced plasticity in tantalum single crystals

    Get PDF
    We report on large-scale non-equilibrium molecular dynamics (NEMD) simulations of shock wave compression in Ta single crystals. The atomic interactions are modeled via a recently developed and optimized embedded-atom method (EAM) potential for Ta, which reproduces the equation of state up to 200 GPa. We examined the elastic-plastic transition and shock wave structure for wave propagation along the low index directions: (100), (110) and (111). Shock waves along (100) and (111) exhibit an elastic precursor followed by a plastic wave for particle velocities below 1.1 km/s for (100) and 1.4 km/s for (111). The nature of the plastic deformation along (110) is dominated by twinning for pressures above 41 GPa

    Encapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate.

    Get PDF
    Carbon monoxide clathrate hydrate is a potentially important constituent in the solar system. In contrast to the well-established relation between the size of gaseous molecule and hydrate structure, previous work showed that carbon monoxide molecules preferentially form structure-I rather than structure-II gas hydrate. Resolving this discrepancy is fundamentally important to understanding clathrate formation, structure stabilization and the role the dipole moment/molecular polarizability plays in these processes. Here we report the synthesis of structure-II carbon monoxide hydrate under moderate high-pressure/low-temperature conditions. We demonstrate that the relative stability between structure-I and structure-II hydrates is primarily determined by kinetically controlled cage filling and associated binding energies. Within hexakaidecahedral cage, molecular dynamic simulations of density distributions reveal eight low-energy wells forming a cubic geometry in favour of the occupancy of carbon monoxide molecules, suggesting that the carbon monoxide-water and carbon monoxide-carbon monoxide interactions with adjacent cages provide a significant source of stability for the structure-II clathrate framework
    • …
    corecore