15 research outputs found

    Electrically driven site-controlled single photon source

    Get PDF
    Single photon sources are fundamental building blocks for quantum communication and computing technologies. In this work, we present a device geometry consisting of gold pillars embedded in a van der Waals heterostructure of graphene, hexagonal boron nitride, and tungsten diselenide. The gold pillars serve to both generate strain and inject charge carriers, allowing us to simultaneously demonstrate the positional control and electrical pumping of a single photon emitter. Moreover, increasing the thickness of the hexagonal boron nitride tunnel barriers restricts electroluminescence but enables electrical control of the emission energy of the site-controlled single photon emitters, with measured energy shifts reaching 40 meV

    Spatially selective reversible charge carrier density tuning in WS_2 monolayers via photochlorination

    Get PDF
    Chlorine-doped tungsten disulfide monolayer (1L-WS_2) with tunable charge carrier concentration has been realized by pulsed laser irradiation of the atomically thin lattice in a precursor gas atmosphere. This process gives rise to a systematic shift of the neutral exciton peak towards lower energies, indicating reduction of the crystal's electron density. The capability to progressively tune the carrier density upon variation of the exposure time is demonstrated; this indicates that the Fermi level shift is directly correlated to the respective electron density modulation due to the chlorine species. Notably, this electron withdrawing process enabled the determination of the trion binding energy of the intrinsic crystal, found to be as low as 20 meV, in accordance to theoretical predictions. At the same time, it is found that the effect can be reversed upon continuous wave laser scanning of the monolayer in air. Scanning auger microscopy (SAM) and x-ray photoelectron spectroscopy (XPS) are used to link the actual charge carrier doping to the different chlorine configurations in the monolayer lattice. The spectroscopic analyses, complemented by density functional theory calculations, reveal that chlorine physisorption is responsible for the carrier density modulation induced by the pulsed laser photochemical reaction process. Such bidirectional control of the Fermi level, coupled with the capability offered by lasers to process at pre-selected locations, can be advantageously used for spatially resolved doping modulation in 1L-WS_2 with micrometric resolution. This method can also be extended for the controllable doping of other TMD monolayers

    Room temperature observation of biexcitons in exfoliated WS<inf>2</inf> monolayers

    No full text
    Single layers of WS2 are direct gap semiconductors with high photoluminescence (PL) yield holding great promise for emerging applications in optoelectronics. The spatial confinement in a two-dimensional monolayer together with the weak dielectric screening leads to huge binding energies for the neutral excitons as well as other excitonic complexes, such as trions and biexcitons whose binding energies scale accordingly. Here, we report on the existence of biexcitons in mechanically exfoliated WS2 flakes from 78 K up to room temperature. Performing temperature and power dependent PL measurements, we identify the biexciton emission channel through the superlinear behavior of the integrated PL intensity as a function of the excitation power density. On the contrary, neutral and charged excitons show a linear to sublinear dependence in the whole temperature range. From the energy difference between the emission channels of the biexciton and neutral exciton, a biexciton binding energy of 65-70 meV is determined

    Emission properties and temporal coherence of the dark exciton confined in a GaAs / Al x Ga 1 − x As quantum dot

    No full text
    International audienceWe report measurements of the radiative lifetimes and coherence times of the dark and bright excitons in an asymmetric GaAs/AlGaAs quantum dot. The dots, fabricated by partial infilling of asymmetric in situ etched nanoholes, have low symmetry, which leads to significant dark-bright mixing as demonstrated by dark-bright anticrossing in magnetophotoluminescence spectra. Using an orthogonal excitation-detection waveguiding geometry and quasiresonant excitation, we compare the coherence properties, measured by Michelson interferometry, of the dark and bright exciton from the same dot in the absence of an external magnetic field

    Spatially selective reversible charge carrier density tuning in WS<inf>2</inf> monolayers via photochlorination

    Get PDF
    Chlorine-doped tungsten disulfide monolayer (1L-WS2) with tunable charge carrier concentration has been realized by pulsed laser irradiation of the atomically thin lattice in a precursor gas atmosphere. This process gives rise to a systematic shift of the neutral exciton peak towards lower energies, indicating reduction of the crystal's electron density. The capability to progressively tune the carrier density upon variation of the exposure time is demonstrated; this indicates that the Fermi level shift is directly correlated to the respective electron density modulation due to the chlorine species. Notably, this electron withdrawing process enabled the determination of the trion binding energy of the intrinsic crystal, found to be as low as 20 meV, in accordance to theoretical predictions. At the same time, it is found that the effect can be reversed upon continuous wave laser scanning of the monolayer in air. Scanning auger microscopy (SAM) and x-ray photoelectron spectroscopy (XPS) are used to link the actual charge carrier doping to the different chlorine configurations in the monolayer lattice. The spectroscopic analyses, complemented by density functional theory calculations, reveal that chlorine physisorption is responsible for the carrier density modulation induced by the pulsed laser photochemical reaction process. Such bidirectional control of the Fermi level, coupled with the capability offered by lasers to process at pre-selected locations, can be advantageously used for spatially resolved doping modulation in 1L-WS2 with micrometric resolution. This method can also be extended for the controllable doping of other TMD monolayers
    corecore